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Executive summary
Climate-informed infectious disease models have the 
potential to become powerful tools to support public health 
decision making. This project aimed to identify existing 
software tools at the intersection of climate and infectious 
diseases, and to identify opportunities for the development 
of tools. 

After searching PubMed for papers published over the last 
10 years, using a customized API and keywords for scoping 
climate and health software, we found 37 fully developed and 
named tools. We interviewed experts in modelling research 
and public health decision making  to understand their 
perspectives on the software tools landscape.

We found very few robust, evidence-led operationalized 
models. This suggests that few studies progress from 
providing the initial evidence of climate-health linkages to 
the operationalization of a decision support tool that could 
inform actions to reduce the burden of disease. 

The majority of tools identified in our review focused on 
vector-borne disease systems. There is a shortage of tools 
for respiratory, foodborne, and waterborne diseases, and no 
tools for soilborne diseases. This revealed an opportunity to 
develop tools for these neglected disease groups.

More than half of the tools were described as 
operationalized; however, only one quarter were freely 
available online and only one quarter had interfaces legible 
to decision makers. Those that did have legible interfaces 
were funded by an institutional or country-level partner. 
Transitioning research to public health practise must be 
accounted for from the project outset since the data that 
feed into the model and the model output (e.g., interfaces) 
need to align with decision-making processes.

Most tools were developed for, and implemented in, 
geographic regions where the infectious disease of interest 
is currently endemic. Tools are needed for regions where the 
risk of disease transmission will increase substantially (zones 
of emergence) due to climate change, demographic shifts, 
and other factors.

North American and European institutions are 
disproportionately represented as tool-creators (38% in 
the USA and UK alone). In the co-creation of tools, there is 
a need for greater representation of investigators from the 
Global South, where many of the tools were designed to be 
used. 

The spatial and temporal scale of the 37 tools varied widely. 
Most tools used gridded climate data to inform models. Few 
models forecast disease risk beyond the seasonal climate 
outlook. It is important to develop models across a range 
of spatio-temporal scales to capture climate and disease 
processes at different scales and to support decision-making 
needs across scales.

Common barriers to tool implementation include lack of 
effective communication between modelers and decision 
makers, lack of personnel to maintain and operate 
systems, and lack of training for new users to operate 
the tools. We also identified a lack of information on 
climate-disease modelling tools for non-English speaking 
countries. There is an opportunity to improve science 
communications, to produce information in multiple 
languages, and to build the capacity of local experts who 
are tool users.

We found that climate datasets are readily 
available, but sharing of health datasets 
is politically sensitive. Most public health 
and climate sectors do not yet have 
a mandate to focus on the climate 
impacts on health. There is a need to 
influence and inform policy to support 
cross-sectoral collaborations, long-term 
resource allocation for work on climate 
and health, and dataset sharing.

These findings indicate clear opportunities 
to invest in the development and 
implementation of climate-driven 
infectious disease modelling tools.
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Project Overview
Predicting the risk of infectious disease outbreaks is 
valuable for public health preparedness. Infectious disease 
transmission and incidence are affected by changes in the 
climate at local, regional and global scales [1]. Increasing 
global temperatures can lead to alterations in human 
behavior that result in increased transmission of pathogens 
and more frequent infectious disease outbreaks [2]. Climatic 
conditions also directly influence environmental suitability 
for pathogen transmission and disease vectors, affecting 
the spatial-temporal distribution of infectious diseases, like 
malaria and its mosquito vectors [3,4]. 

Climate forecasting systems that enable us 
to predict disease risk are in great demand 
for public health planning and early warning 
systems (EWS) [1,5]. 
These systems often rely on statistical tools and forecasting 
models to estimate the future likelihood of disease 
outbreaks. They can provide valuable lead time for public 
health decision makers to take action ahead of an outbreak 
and can support policies aimed at  reducing medium- and 
long-term climate risks.

Climate-informed tools have been frequently used for 
the study of vector-borne disease systems, given the 
documented effects of climate conditions (e.g., rainfall, 
temperature) on vector biology and disease transmission 
[3]. Yet, many infectious diseases are modulated by climate 
conditions at various scales, including diseases with direct 
transmission pathways (e.g., influenza spread via respiratory 
transmission), waterborne diseases (e.g., cholera, giardiasis), 
and food-borne diseases (e.g., salmonellosis) [6–8].

There are a number of computational and statistical 
frameworks that are applied to climate-disease problems. 
Specifically, model-based approaches offer the opportunity 
to identify the direction of climate-disease relationships and 
quantify these relationships under natural conditions (i.e., 
not relying on experimental approaches that are unfeasible 
or unethical). This allows for predictions and climate-based 
disease forecasts that can inform policy in a timely and 
anticipatory manner. Software tools and packages are being 
created in a variety of coding languages (e.g., R, Python, 
Julia etc.) from a range of perspectives and specializations, 
reflecting the numerous disciplines contributing to this 
field. These include medical and health geography, 
disease ecology, applied climate science, data science, 
epidemiology, public health, and infectious disease medicine.

Although climate-informed modelling 
systems can be useful in public health 
planning, there can be considerable barriers 
to adoption and implementation, such as 
gaps in technological expertise, a mismatch 
between the model outputs and decision-
making needs, and financial constraints [5].  
User-friendly software tools can be 
developed so that forecast models are more 
accessible to public health practitioners and 
other stakeholders interested in climate-
informed decisions.

Project Aims

This project aimed to identify the availability of, and need 
for, software tools amongst the climate-sensitive infectious 
diseases modelling community and public health tool users. 

The objectives of this project were:

To identify tools by scoping the landscape of models 
addressing climate-sensitive infectious diseases, with an 
eye to identifying the current available set of tools for public 
health decision makers. 

To understand expert perspectives on tools by engaging with 
researchers and policy stakeholders at key organizations in 
the fields of climate and infectious disease to understand 
their perspectives on the software tools landscape.

Report Categories

Section I of this report describes a comprehensive 
literature review and synthesis. Section II shares the 
results of interviews with global experts from research and 
policy communities. Section III provides conclusions and 
recommendations.
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Scoping Climate-Health 
Software for Infectious 
Diseases: Literature 
Review and Synthesis

1

Identifying 37 tools from 30,000 
papers and synthesizing key 
findings.



Introduction
Climate-sensitive infectious diseases pose an increasing 
threat under the combined trajectories of demographic and 
climatic changes [1,3,9]. As human populations push into 
both increasingly urbanized and dense spaces [10], and rural 
and wild interfaces, the frequency of potential interactions 
with environmentally linked diseases is also increased. When 
we add the prospect of a changing climate, we are faced 
with the question: when and where will the risk of outbreaks 
or rising disease incidence occur? To answer this question, 
we must rely on our current understanding of climate-
sensitive diseases in order to forecast or predict likely 
outcomes in the short-, medium-, or long-term future, using 
available datasets, models and tools. 

In this report, we aimed to identify tools 
that incorporate both climate inputs and 
epidemiological information to produce 
an output as a prediction or indicator 
of disease risk. We sought to identify 
accessible software platforms that are 
also implementation ready. We scoped the 
landscape of models addressing climate-
sensitive infectious diseases, with an eye to 
identifying the current available set of tools 
for public health decision makers. 

The ideal tool 
for modelling climate-sensitive 
infectious diseases fulfills the 
following required qualifications:

Incorporate both 
climate inputs and 
epidemiological 
information.

Produce an 
output as a 
prediction or 
indicator of 
disease risk in a 
single software 
package.

Are transparently 
described and 
validated.

Are named, for 
future searching 
and versioning.

Are accessible - 
code is published, 
or available on a 
code repository, a 
web platform, or 
other.

0.1
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1.1 Methodology

A —
Automated Review
Using our application programming interface (API), we 
searched PubMed for papers published between 2011-
2021 using search term triplets combining climate, 
infectious disease, and technological keywords (e.g., 
climate+epidemic+logistic, seasonal+influenza+forecast, 
etc). The full list of search terms is provided in the 
Appendix.

This resulted in ~60,000 unique searches yielding over 
30,000 unique papers. This list was reduced by analysing 
relevancy of keywords and Medical Subject Heading 
(MeSH) terms (i.e., terms used in PubMed to classify papers 
with keywords) and quality of search terms, resulting in 
9,500 publications. A relevancy score was devised and 
the top ~2000 relevant papers were reviewed, in addition 
to papers that contained technological tool terms. A total 
of 2,380 relevant papers from the literature search were 
partitioned into seven sets for manual screening, to identify 
papers that potentially featured tools within the scope of the 
review.

B — 

Paper Review
The full list of papers comprised 242 publications. Of 
these papers, 62 were identified as having potentially 
operationalized modelling tools. Following screening 
and data extraction, 48 of the papers featured a named 
infectious disease modelling tool that incorporated 
climatological or meteorological data. After accounting for 
studies that used the same models, we found a total of 37 
unique tools (Table 2).

C —
Tool Enrichment 
We investigated each of the 37 tools individually and created 
a database which contained additional attributes about each 
tool including: the models of infectious disease systems each 
tool utilised, the software packages used to build it, and 
whether or not the code repositories were openly accessible. 
The full list of attributes is presented below :

Publication Details
• Study ID
• Authors
• Institutions
• Publication Date
• Foundational Paper

Study Information
• Country
• WHO Region
• Disease or Vector
• Mode of Transmission

Tool Specifics
• Operationalized
• Availability
• Link to Tool Partners
• Tool Name
• Name Acronym
• Derived Model
• Name of Original
• Model
• Type of Model
• Software
• Scale of Study
• Input Data
• Climate Products
• Climate Variables
• Model Output
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1.2 Result in Alphabetical Order

AeDES
Aedes-borne 
Diseases

albopictus 
package
Aedes-borne 
disease

ANOSPEX
Malaria

ArboMAP
West Nile virus

BODA’ 
package
Campylo 
bacteriosis

CIMSiM, 
DENSiM
Dengue

Disease 
Monitoring 
Dashboard
West Nile virus

DyMSiM
West Nile Virus

ECDC 
Vibrio Map Viewer

EPIDEMIA
Malaria

 

epidemiar
Malaria

EpiGraph
Influenza

EPIPOI
Diverse health 
problems

eRisk 
Mapper
Diverse health 
problems

EWARS
Dengue

FleaTickRisk
Transmitted by 
Rhipicephalus 
sanguineus ticks

HYDREMATS
Malaria

LIS-MAL
Malaria

Liverpool 
Malaria 
Model
Malaria

Liverpool 
Malaria 
Model 2010
Malaria

Liverpool RVF 
model
Rift Valley Fever

LMM_RO,  
MIASMA, 
UMEA 
MARA
Malaria

MARA  
LITe
Malaria

MGDrivE 2
Mosquito-borne 
diseases

MVSE
Mosquito-borne 
viruses

OMaWa
Malaria

Open 
Malaria
Malaria

Rapid Inquiry 
Facility
Diverse health 
problems

RVF plug-in
Rift Valley Fever

SCOPIC
Malaria

SLIM
Malaria

STEM
Influenza

VECTRI
Malaria

WNV_model
West Nile Virus

yews4denv
Dengue

 

List of unique tools with a climate component used for the analysis of 
infectious diseases.

Explore the online database:  
https://hetco.io/tools-for-climate-sensitive-diseases/tool-list/
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1.3 Key Findings

We identified only 37 fully developed tools, 
but identified other models that represent 
an opportunity for tool development.
Of the 9,500 papers identified in the literature review, we 
found only 37 unique software tools meeting our criteria. This 
suggests that few studies progress from providing the initial 
evidence of climate-health linkages to the operationalization 
of a decision support tool that could inform actions to 
reduce the burden of disease. However, a number of models 
identified in this review could be rapidly transitioned to useful 
tools with additional development support.

The majority of tools focused on vector-borne disease 
systems

Most tools identified in our review (81.1%) focused on 
vector-borne disease systems. Of the tools dedicated to 
modelling vector-borne diseases (n=30), 53.3% focused on 
malaria, 13.3% on dengue, 13.3% on West Nile virus, and 
6.7% on Rift Valley fever. There is a shortage of tools for 
respiratory, foodborne, and waterborne diseases, and no 
tools for soilborne diseases. This revealed an opportunity to 
develop tools for these disease groups.

 

More than half were described as operational; only one 
quarter had legible interfaces

Over half (n=20) of the papers in our reviewed list indicated 
that the featured tools were operationalized, either by 
presenting a tool as an accessible product (e.g., a software 
package available for download, such as the ‘surveillance’ 
package for R, which can be freely downloaded on the 
Comprehensive R Archive Network (CRAN) repository), or 
by using a tool in an applied capacity (i.e., generating results 
that were used to inform partners, rather than validation 
exercises). However, only one quarter were freely available 
online. Additionally, only one quarter had interfaces legible 
to finance, policy and regional decision makers. There is an 
opportunity to invest in the existing tools to increase their 
accessibility and to create user-friendly interfaces.

Mostly tools were developed for countries where the 
target infectious disease was endemic

Most of the tools were developed for, or implemented in, 
geographic areas where the infectious disease of interest 
was endemic. We also identified large variation in the spatial 
and temporal scales of the 37 tools. Most tools used gridded 
climate data to inform models. Few models forecast disease 
risk beyond the seasonal climate outlook. It is important to 
develop models across a range of spatio-temporal scales 
to capture climate and disease processes at different scales 
and to support decision making needs across scales.

 

Investigators from European / US institutions were the 
most common tool developers

North American and European institutions are 
disproportionately represented as tool-creators (38% 
in the USA and UK alone). There is a need for greater 
representation of tool developers from Global South, where 
many of the tools were designed to be used.

38
of tool-creators are based in the west, 
however the tools are mainly designed 
to be used in the Global South.
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1.3.1 Vector-Borne Disease Focus

81
of tools focused on vector-borne 
disease systems.

2013

2017

2011

BODA’ 
package 
Campylo 
bacteriosis

ECDC  
Vibrio Map 
Viewer
Vibrio

FleaTickRisk 
Transmitted by 
Rhipicephalus 
sanguineus ticks

LMM_RO,  

2014

EPIPOI
Diverse health 
problems

2012

EpiGraph 
Influenza

2020

SCOPIC
Malaria

2017

ArboMAP
West Nile virus

2018

albopictus 
package
Aedes-borne diseases

2016

Open 
Malaria
Malaria

2012

SLIM
Malaria
SLIM

2019

CIMSiM, 
DENSiM
Dengue
CIMSiM

2019

ANOSPEX
Malaria

2013

VECTRI
Malaria

2019

EWARS
Dengue

2018

epidemiar
Malaria

2020

Liverpool 
Malaria 
Model 2010
Malaria

2011

Liverpool 
RVF model 
Rift Valley Fever

2016

eRisk 
Mapper
Diverse health 
problems

MARA  
LITe
Malaria

1999

STEM 
Influenza
STEM

2011

Disease 
Monitoring 
Dashboard
West Nile virus

2018

MGDrivE 2
Mosquito-borne 
diseases

2021

OMaWa
Malaria

2007

Rapid Inquiry 
Facility
Diverse health 
problems

2020

LIS-MAL
Malaria

2020

DyMSiM
West Nile Virus

2013

MVSE 
Mosquito-borne 
viruses

2019

EPIDEMIA
Malaria

 

2017

Liverpool 
Malaria 
Model 
Malaria

2014

WNV_model
West Nile Virus

2021

RVF  
plug-in 
Rift Valley Fever
RVF plug-in

2014

yews4denv
Dengue

 

2016

WATER 
BORNE 

DIVERSE 
TRANSMISSION

RESPIRATORY

FOOD 
BORNE 

53% of 
tools 
focused  

VECTOR 
BORNE 

Table of the 37 tools, categorized 
based on their infectious disease 
focus area.  
 
81% of the tools had an vector-
borne disease focus. 53% of tools 
focused on malaria.

HYDREMATS
Malaria

2018

Findings

Most tools identified in our review (81.1%) 
focused on vector-borne disease systems. 
Of the tools dedicated to modeling vector-
borne diseases (n=30), 53.3% focused on 
malaria, 13.3% on dengue, 13.3% on West 
Nile virus, and 6.7% on Rift Valley fever.
Five tools for vector-borne disease systems (13.5%) focused 
on vectors more generally when modeling outcomes of 
interest, rather than focusing on a discrete pathogen (e.g., the 
AeDES model for habitat suitability of Aedes-borne disease 
transmission, where Aedes spp. mosquitoes are competent 
vectors for a variety of pathogens [11]).

Approximately 10% of modeling tools were applied to 
infectious diseases with other modes of transmission, 
including respiratory (5.4%), food-borne (2.7%), and 
waterborne (2.7%). Four of the tools identified (10.8%) were 
flexible in terms of health focus, where surveillance data from 
a wide variety of user-specified infectious disease systems 
could be used as data inputs for the tool (e.g., mapping 
platforms such as eRiskMapper, and user-driven analytical 
tools, such as the EPIPOI platform [12]).
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Implications

Most of the tools and operationalized models identified in 
our review focus on malaria (e.g., EPIDEMIA and associated  
‘epidemiar’  R package [13,14]). This is perhaps expected, 
as vector-borne disease systems are often studied in the 
context of climate, and malaria has been a global public 
health priority for decades.

The lack of dedicated tools for estimating 
outbreaks with other modes of transmission 
and other vector-borne transmission 
systems represents a major knowledge gap 
that could have tangible implications for 
climate-informed planning and response.
Further, expanding the foci of modelling tools may aid 
in developing resilient policies for neglected diseases, 
or emerging infectious diseases in light of climatic and 
demographic changes.
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Muñoz, Á. G., et al. "Ae 
DES: a next-generation 
monitoring and forecasting 
system for environmental 
suitability of Aedes-borne 

Case Study 1:  
AeDES Map Room 
a Vector-borne Disease 
Focused Tool

Aedes-borne diseases’ environmental suitability  
(AeDES) maproom

The Aedes-borne diseases’ environmental suitability 
(AeDES) maproom allows decision makers to monitor 
and forecast diseases (including Zika, dengue, and 
chikungunya) transmitted by the Aedes albopictus 
and Aedes aegypti mosquitoes to better prepare their 
communities for future outbreaks. This tool incorporates 
four different environmental suitability models, considering 
climate factors and mosquito life cycle. 
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1.3.2 Implementation, Data 
Scales and Inputs

44
tools found in this review have been 
implemented in African countries.

Map showing countries where 
tools have been implemented. 
Most of the tools were 
developed for, or implemented 
in, geographic areas where the 
infectious disease of interest was 
endemic.

Darker colors represent countries 
that were the site of more tool 
related studies. 

Legend

  Data Scales

Findings

The tools found in this review have been 
implemented in several WHO regions, 
spanning Africa (43.8%), the Americas 
(14.6%), Europe (10.4%), the Western 
Pacific (10.4)%, South-East Asia (6.3%), 
and the Eastern Mediterranean (2.1%). Four 
tools (8.3%) had a global extent and did not 
focus on a single geographic region.
The spatial scale of tools in our final list varied considerably, 
ranging from highly localized foci (8.1%), for example 
simulations for individual villages, to tools with a global or 
continental extent (16.2%). The majority of tools (75.7%) 
produced output at some intermediary scale (e.g., health 
district, country, region, etc).

Scale was either dictated by the tool itself (e.g., simulation 
models designed to replicate disease transmission within 
a single town or community), or, in many cases, was 
dependent on user specifications, as determined by the 
spatial resolution of data inputs (e.g., epidemiological data 
reported by administrative units, or the spatial resolution of 
gridded climate products). Many studies (29.2%) that used 
epidemiological data from health departments or surveillance 
networks as data inputs for models also reported their 
findings using the same administrative units (e.g., provinces, 
counties, local health reporting districts).
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LOCALIZED

CONTINENTAL

EPIDEMIA
Malaria

 

eRisk 
Mapper
Diverse health 
problems

DyMSiM
West Nile 
VirusDyMSiM

epidemiar
Malaria

MGDrivE 2
Mosquito-
borne 
diseases

ECDC  
Vibrio Map 
Viewer
Vibrio

2017

MVSE
Mosquito-
borne viruses

Open 
Malaria
Malaria

ArboMAP
West Nile virus

LIS-MAL
Malaria

2020

Rapid 
Inquiry 
Facility
Diverse health 
problems 

RVF  
plug-in
Rift Valley 
Fever

ANOSPEX
Malaria

CIMSiM, 
DENSiM
Dengue

Liverpool 
RVF model
Rift Valley 
Fever

OMaWa 
Malaria

SCOPIC
Malaria 

EWARS
Dengue

MARA  
LITe
Malaria

STEM
Influenza

EpiGraph
Influenza

VECTRI
Malaria

Liverpool 
Malaria 
Model 2010 
Malaria 

LMM_RO,  

2014

BODA’ 
package
Campylo
bacteriosis

yews4denv 
Dengue

 

Disease 
Monitoring 
Dashboard
West Nile
virus

albopictus 
package 
Aedesborne 
diseases

2016

EPIPOI
Diverse health 
problems 

Liverpool 
Malaria 
Model
Malaria

SLIM 
Malaria

AeDES
Aedes-borne 
diseases

Table of the 37 tools, 
categorized based on their 
spatial focus. 16% operated 
on a continental spatial scale. 

  Data Inputs

Implications

Most of the tools were developed for, or implemented in, 
geographic areas where the infectious disease of interest 
was endemic and we noted large variation in the spatial 
scale. In general, it is important to encourage models across 
a range of spatial scales to support diverse decision-making 
needs.

Tools that are highly localized will have 
limited, if any, transferability across 
geographic regions. This potentially 
highlights a need for the development 
of tools with a broader spatial focus, 
particularly for diseases, or disease vectors, 
that are expected to undergo range shifts 
under climate change.
While localized tools (i.e., tools developed on a fine spatial 
scale) may limit operationalization to specific regions, these 
models may have the benefit of being well validated locally, 
which may lead to more accurate predictions for local health 
authorities. Conversely, tools with very coarse resolutions 
(e.g., global or continental model output) may be of limited 
use for local stakeholders.

16
Operated on a continental spatial  
scale.

16Landscape mapping of software tools for climate- sensitive infectious disease modelling



Oluwagbemi, Olugbenga 
O., et al. "ANOSPEX: 
a stochastic, spatially 
explicit model for 
studying Anopheles 
meta-population 
dynamics." PloS one 8.7 
(2013): e68040./

Case Study 2:  
ANOSPEX a tool at a 
localized scale.

Findings

The climate products used as data inputs for risk predictions 
varied considerably, both with model type and study area. 
These included remotely sensed data products (e.g., 
NASA satellite imagery), interpolated weather station data 
(e.g., WorldClim, Global Historical Climatology Network 
(GHCN)), and modeled climate projections (e.g., IPCC 
global climate projections). A majority (58.3%) of models 
utilized gridded climate products. One third (33.3%) of the 
models utilized local meteorological datasets, either from 
national meteorological centers or local weather stations. 
Temperature (85.1% of studies) and precipitation (68.1% of 
studies) were the most commonly used climate indicators, 
either as model predictors or descriptive variables. Measures 
of humidity were used in nearly a quarter (25.5%) of the 
studies. Few models forecasted disease risk beyond the 
seasonal climate outlook.

ANOSPEX is implemented as a grid representation 
of residential properties, where each property has 
one house and two larval habitats for mosquitoes 
to develop in. Adult mosquitoes can move from one 
property to another property. Weather parameters 
used in the model were maximum temperature, 
minimum temperature, average temperature, 
precipitation, saturation deficit and relative humidity.

TEMPERATURE PREDATION MOISTURE / 
HUMIDITY

AIR AND WATER

EGG PHASE LARVE PHASE

TEMPERATURE PREDATION MOISTURE / 
HUMIDITY

PUPAE PHASE
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MATING
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1.3.3 Methodological Approaches 
and Technology

Types of Modelling Approaches

Diverse modelling approaches were incorporated into 
the tools found in the review. Of the 37 tools, the majority 
(59.5%) used either mechanistic or dynamical population 
modelling approaches. Other analytical methods included 
time series modelling, regression methods, Bayesian 
modelling, decision rules, and multi-model ensembles.

We did not consider species distribution modelling (SDM) 
frameworks, also described as ecological niche modelling 
(ENM), as standalone tools in this review since, with few 
exceptions, these are methodological approaches rather 
than standalone software tools. There are a number of 
algorithms, software packages, and programs used to build 
species distribution models [15– 17]. SDMs have been used 
in vector-borne disease modelling approaches, applied to 
describe vector occurrence, infected vector occurrence [18], 
and to human cases of disease [19]. Species distribution 
models do not inherently have any climate data as part of 
the algorithm. Environmental data are supplied by the user 
as static inputs, and these can include gridded climate 
summaries (e.g., mean temperature, mean rainfall, etc), but 
this input is not coded into the software.

Papers that used SDMs to describe disease or vector 
distributions as a function of climate variables were quite 
prevalent in our final results, where 17.8% (n=43) of our 
initial screening list of 242 papers used these methods, and 
thus, are worth noting. The most frequently used SDM was 
MaxEnt (Maximum Entropy algorithm, often implemented in 
the software of this name [20] or the R package distribution 
modelling (‘dismo’) [21]), which was used in more than half of 
the papers (65.1%, n=28). The prevalence of MaxEnt is likely 
due to the availability of an open source software package, 
in addition to options for implementation in R. Other SDM 
algorithms used in the initial screening results included 
BIOMOD, boosted regression trees (BRT), classification and 
regression trees (CART), GARP, and random forests (RF).

Foundational vs Derived Publications

Nearly half (39.6%) of the studies in our final list were 
foundational papers, indicating the first use or description of 
a given tool in the literature. 

Many of the tools in our list (40.5%) were explicitly derived 
from existing tools, including updates to previously published 
models, and new models that incorporated components of 
existing models.

Discrete Models vs Software Platforms

Some tools provided flexible platforms for analyzing or 
visualizing infectious disease systems, as opposed to 
discrete models. These included dedicated software 
packages (n=9), web-based applications (n=3), and a code 
repository (n=1).

Programming Languages

The R programming language was used to develop or 
implement almost one third (29.7%) of the tools. Other 
programming languages or software included Python (n=4), 
C++ (n=3), MatLab (n=3), and FORTRAN90 (n=1).

39
were foundational publications. 

40
were derived from other 
existing tools.  
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Savini, L., Tora, S., Di Lorenzo, 
A., Cioci, D., Monaco, F., Polci, 
A., ... & Conte, A. (2018). A Web 
Geographic Information System 
to share data and explorative 
analysis tools: the application 
to West Nile disease in the 

Case Study 3:  
Disease Monitoring Dashboard, an 
openly accessible tool. 

Disease Monitoring Dashboard

Disease Monitoring Dashboard system collects data 
through on-line forms and automated procedures 
and visualizes data as interactive graphs, maps 
and tables. The spatial and temporal dynamic 
visualization of disease events is managed by a 
time slider that returns results on both map and 
epidemiological curve. Climatic and environmental 
data can be associated to cases through python 
procedures and downloaded as Excel files.
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1.3.4 Operationalization and 
Availability

Operationalization

Over half of the tools (n=21) were described as 
operationalized. The tool was either described as an 
accessible product (e.g., a software package available for 
download, such as the ‘surveillance’ package for R, which 
can be freely downloaded on the CRAN repository), or 
was described as being used in an applied capacity (i.e., 
generating results that were used to inform partners, rather 
than validation exercises). We note that, in this context, 
operationalization does not necessarily mean that available 
tools are actively used by the public health sector to inform 
decision making.

Only one quarter of the tools had interfaces legible to 
finance, policy and regional decision makers. Those that 
did were funded by an institutional or country-level partner. 
This suggests that transitioning research to public health 
practice must be accounted for from the project outset since 
the data that feed into the model and the model output (e.g., 
interfaces) need to align with decision making processes 
identified by public health professionals.

Availability

The majority of tools (59.5%) were freely available in some 
form online, with 16.2% available as R packages on the 
CRAN repository, 16.2% with available source code on 
GitHub, and 5.4% on GitLab.

Additionally, almost one third (n=11) of tools were associated 
with dedicated websites (e.g., a website for the tool or the 
project), sometimes together with  instructions for use and 
links to download.

Usability

Although assessing the usability and actual use of tools was 
beyond the scope of this review, tools that were hosted on 
external websites (e.g., GitHub), with links included in the 
publication, or available as open access software packages 
(e.g.,R packages such as ‘surveillance’ [22] and ‘epidemiar’ 
[14]) appeared to be more readily accessible.

The accessibility of tools was not always apparent in the 
literature, as published papers often had no clear instructions 
on how to access tools or where tools were hosted, with 
some papers instructing to contact the study authors for 
more information (e.g., some applications of the VECTRI 
model [23]).

59
of the tools were available freely  
in some form online. 
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1.3.5 Institutions and Partners

Findings

There were 102 institutions represented in the author list of 
the 48 publications screened in our review. Over one third 
(38.2%) of these institutions were based in the USA or UK. 
Only 24 institutions were associated with more than one 
paper, which included universities and agencies located in 
Europe (n=11), the Americas (n=8), the Western Pacific (n=3), 
and South-east Asia (n=1).

Designated corresponding authors for the 37 tools were 
based in the USA (32.4%), UK (27.0%), other European 
countries (29.7%), Australia (5.4%), South-east Asian 
countries (5.4%), and Tanzania (2.7%). Nearly one quarter 
(22.9%) of papers listed institutional partners. Partners 
identified by study authors ranged from international 
organizations (e.g., WHO, PAHO), to national agencies (e.g., 
CDC, ECDC), and regional partners, such as local health 
departments or academic institutions. 

Although the majority of papers reviewed 
did not explicitly name agency and 
institutional partners, it was noted that 
author affiliations on individual publications 
were quite diverse, possibly indicating the 
inclusion of partner organizations in the 
publication process.

Implications

North American and European institutions were 
disproportionately represented in the production of tools. 
There is a need for greater representation of the Global 
South, where many of the tools were designed to be used. 

38
of institutions were based in the 
UK or US. 

23
Papers listed an institutional partner. 
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The ECDC Vibrio Map Viewer

The ECDC Vibrio Map Viewer displays coastal 
waters with environmental conditions that are 
suitable for Vibrio spp. growth internationally. 
It is based on a real-time model that uses daily 
updated remotely sensed sea surface temperature 
and sea surface salinity of coastal waters as inputs 
to map areas of high suitability for Vibrio spp. that 
are pathogenic to humans.

Case Study 4:  
ECDC Geo-portal Dashboard,  
a Tool funded by ECDPC 

Levy, Sharon. "ECDC Vibrio 
map viewer: Tracking the 
whereabouts of pathogenic 
species." Environmental health 
perspectives 126.3 (2018): 
034003.
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1.3.6 Keyword Analysis

Findings

A number of methodological approaches were commonly 
used throughout the relevant papers to assess the 
relationship between climatic factors and infectious 
disease outcomes. Regression methods were used in 
many studies, where terms commonly used to describe 
statistical analyses included logistic regression (n=78), 
linear regression (n=29), generalized linear model (n=27), 
hierarchical model (n=11), multiple linear regression (n=8), 
and stepwise regression (n=6). Methods used to estimate 
pathogen distributions and machine learning algorithms 
were also frequently encountered in the literature search 
results, with studies using the terms including MaxEnt 
(n=77), ecological niche model (n=77), species distribution 
model (n=41), boosted regression trees (BRT) (n=15), habitat 
suitability model (n=9), GARP (n=5), random forests (n=5), 
BIOMOD(n=1), classification and regression trees (CART) 
(n=1), and exploratory niche factor analysis (ENFA) (n=1). 
These keywords captured some of the most commonly 
implemented methodologies used in the relevant literature.

We note that studies not using common keywords to 
describe analyses would not necessarily be captured in the 
keyword analysis, emphasizing the need for standardized 
terminology in climate- health research. This becomes 
particularly evident when working across specializations, 
which may have different conventions for describing 
methodology. Very broad terms, for example ‘regression 
analysis’, could be used to describe a vast array of 
methodological approaches. Conversely, some methods that 
are fundamentally similar may be described by several terms 
(e.g., ecological niche modelling and species distribution 
modelling; mathematical modelling and dynamical modelling; 
simulation and stochastic modelling), making it at times 
difficult to categorize statistical methods across studies.

Implications

Studies with well defined statistical frameworks could 
potentially be leveraged for the development of new tools in 
the future. Existing climate models for infectious diseases 
could serve as the basis for new software development in the 
future. This underscores the need for investment to transition 
existing models to become useful tools. To illustrate this 
point, we have identified some examples from the scientific 
literature that did not meet our final criteria for named tools, 
yet have great potential for future tool development.

• Ryan et al. (2019) used temperature- dependent models of 
transmission to produce projections of dengue transmission 
risk under different scenarios of future climate change. This 
model provides a means to analyze and visualize climate-
mediated range shifts in disease transmission and risk, and 
to describe regional population impacts [24]. This work has 
clear value for climate adaptation planning by the public 
health sector. However, although the model output is freely 
accessible, code and software to implement the model are 
not currently available.

• In another example, a climate-informed dengue forecasting 
system was developed for Vietnam as part of the Dengue 
forecasting MOdel Satellite-based System (D-MOSS) project 
[25]. In this example, the forecasting model was explicitly 
developed to be used as part of an early warning system, 
with R code to run the model openly available on GitHub. In 
this case, the existing model could clearly be developed into 
a discrete, named tool with little additional effort, or further 
developed into a standalone software package or modelling 
platform

• Another example is a model that was developed for 
Brazil to understand the delayed and nonlinear impacts of 
hydrometeorological extremes on the space-time distribution 
of dengue outbreaks [26]. The model was adapted from a 
previous model developed for Barbados [27] and the model 
code was shared on GitHub. Although the methodology is 
being reproduced by researchers and non-governmental 
organizations for Colombia and Peru, the model itself 
was not named or packaged due to human resource and 
technological capacity constraints.

Moving forward, partnerships between 
climate-infectious disease researchers and 
software engineers may help increase the 
number of models that are developed into 
standalone tools.
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2
Understanding 
perspectives on the 
software tools landscape 
from researchers and 
policy stakeholders

Interviews with 
global experts



2.1 Methodology

Introduction

We engaged with global researchers and policy stakeholders at 
key organizations in the fields of climate and infectious disease 
to better understand their perspectives on the software tools 
landscape. To undertake this, we used a mixed methods approach 
to exploratory sequential research (28,29). We conducted semi-
structured interviews to identify the current gaps that might be 
addressed by targeted investments in software-based tools. 
Following the interview, we conducted a survey with those who 
worked directly with models, software or tools to assess software 
quality, usability, efficiency and reproducibility at the user level. 
These findings elucidate the successes and challenges in the 
implementation and operation of these tools.

A — 

Sampling and Interview Approach

We identified interviewees working 
in institutions across the six WHO 
regions, with an emphasis on those 
who had experience in low and middle 
income countries (30). Eligibility was 
met if they were researchers, policy 
stakeholders and civil society and 
cross-sectoral collaborators working 
on issues related to climate and 
health.

Interviewees were asked about:

• Personal views, opinions and 
experiences on datasets and tools that 
are used;

• The way through which data and 
tools are accessed and curated;

• The principal steps of modelling 
processes (from data collection to 
results dissemination, including the 
software packages used);

• Key barriers preventing the process 
being done efficiently (i.e., physical 
and human resources, institutional/
political barriers to climate-health 
partnerships such as limited political 
mandates);

• Software tools that would help 
address the missed opportunities 
defined through engagement with the 
policy makers;

• Where the current approaches 
to modelling the impact of climate-
sensitive infectious diseases fall 
short of what is required as a policy 
maker (e.g., what decisions do policy 
practitioners actually need to make);

• How could this gap be most usefully 
addressed by science/software tools; 
and, opportunities where software 
development would have an impact.

B — 

Data Protection

Compliance with UK GDPR 
requirements was confirmed in 
collaboration with the Wellcome Trust 
legal and data protection teams. Prior 
to interviewing, the project purpose 
and expectations of involvement were 
explained to the participants. We 
obtained oral and written informed 
consent from all participants. Data 
was stored in a secure place and the 
anonymity was maintained through 
de-identification. All participants 
were adults (>18 years of age) and no 
personal identifiable information was 
recorded. 

C — 

Data Analysis

Data from the recorded interviews 
were analyzed thematically in line with 
the project aims (31,32). Relationships 
and comparisons between themes 
were conducted in an iterative 
process. This ensured that attention 
was given for consistent patterns 
within the data focusing on similarities 
and differences on responses given 
by participants to aid analysis and 
interpretation.

Regular meetings were held among 
the team and with Wellcome 
Trust staff prior to conducting 
interviews in order to understand the 
contextual factors that would frame 
potential participants’ opinions and 
perspectives. The researchers who 
conducted the interviews were familiar 
with the context and the process of 
stakeholder engagement and tool 
creation as well as implementation, 
thus establishing credibility. 
Dependability was established 
by describing the data analysis in 
detail and providing direct citations. 
Conformability and consistency of 
the analysis were established by 
holding meetings for the research 
team to discuss preliminary findings 
and emerging themes until a 
consensus was reached. To enhance 
the transferability of the findings, we 
have provided a description of the 
contexts, selection and background 
of participants, data collection and 
analysis process (33,34).
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2.2 Key Findings

We interviewed twenty-one researchers, 
tool developers, cross-sectoral 
collaborators, policy and decision makers 
working in Africa, the Americas, Eastern 
Mediterranean, Europe, South-East Asia 
and the Western Pacific.

Inter-sectoral sharing of datasets

Inter-sectoral sharing of climate and disease datasets is 
limited. Interviewees described various datasets and tools 
that are being used for climate-sensitive infectious disease 
forecasting and prediction. These collaboration processes 
involve multiple stakeholders, however, data sharing remains 
a barrier to tool development and implementation. 

Principal challenges to obtaining key datasets

The principal challenges to obtaining datasets for climate-
disease modelling are related to the incompleteness of the 
data and lack of access despite formal partnership and 
multilateral agreements. Most public health and climate 
sectors don’t have a mandate to focus on the climate 
impacts on health, thus limiting the resources dedicated to 
support these efforts over the long term.

“As health sectors don’t 
have a mandate to focus on 
climate impact on health, I 
suspect that having political 
mandates would be very 
important.”

21
interviews

Barriers to the effective use of disease forecast models

Key barriers preventing the use of climate-disease 
models as decision-support tools are poor data quality, 
miscommunication between researchers and decision 
makers, lack of expertise, and lack of funding.

“As researchers, we would 
like everyone to use the 
software of our choice, it’s 
not going to happen... We 
need to adapt to what people 
on the ground are using and 
make the most of it.”
In summary, the development of cutting edge tools is 
important, but even more important are the multi-sectoral 
collaborations, strengthening of local capacities, and the 
ability of tool developers to clearly communicate with 
decision makers.
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2.3.1 Inter-sectoral Sharing of 
Datasets

Participants explained that sharing of 
datasets can be difficult due to a lack 
of knowledge and motivation about the 
importance of inter-sectoral collaboration. 
They also highlighted the lack of automated 
data sharing protocols and formal 
collaboration agreements between the 
climate and health sectors. Participants also 
pointed out that data sharing agreements 
are sometimes limited to the duration of 
specific projects.
However, efforts are underway in some regions to put in 
place permanent inter-sectoral agreements. In South-
East Asia and the Western Pacific, interviewees described 
government regulations and specific agreements that 
establish automatic data sharing. In the Americas, regional 
organizations such as CARPHA and PAHO are supporting 
national-level collaborations and data sharing agreements 
across the climate-health sectors. In some cases, strong 
networks have been established among researchers and 
cross-sectoral partners to share relevant datasets and to 
advocate for data sharing.

Interviewees also reported that the climate sectors may be 
more inclined to share datasets than health sectors. In other 
words, climate datasets are readily available, but sharing of 
health datasets is politically and ethically sensitive due to 
privacy concerns regarding personal health information.
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2.3.2 Principal challenges to obtaining 
key datasets

The experience of obtaining different datasets is contingent 
to the region, the country, as well as the type of data that 
are required. Interviewees indicated that lack of access 
and poor quality and completeness were major barriers 
to obtaining datasets to inform the development and 
implementation of climate-disease modelling tools.

Access

Access to health data was deemed one of the largest 
constraints. Most participants agreed that data involving 
informed consent or sensitive personal information takes 
long periods of time to request and may never actually be 
shared. In some cases, countries may err on the side of 
caution when sharing data on infectious disease outbreaks, 
as a forecast of a future epidemic could reflect poorly and 
could have major consequences for the national economy. 
One respondent shared that countries are protective of this 
data because they do not want to be red listed for travel 
advisories.

Respondents also shared that a lack of human resources 
may limit the capacity of some sectors to engage in a new 
modelling project. This has been especially apparent during 
the COVID-19 pandemic, when health sectors were over 
stretched. Finally, participants shared that setting up data-
use agreements can be challenging when there are limited 
or no national level mandates to support climate and health 
collaboration, thus making this work a lower priority.

“In the last year and a 
half we may have no data 
reported for some areas  
due to shift in personnel  
to COVID-19 work.”

Quality and Completeness

Quality and completeness of data was the other major 
challenge reported for obtaining key datasets to inform 
climate-disease modelling. This is mainly due to a lack of 
proper tools and/or knowledge required for the collection and 
storage of long-term datasets. For example, key monitoring 
and surveillance data may be missing due to a lack of 
collaboration between the sectors which would establish 
common goals, follow-up and quality control. Interviewees 
also reported a lack of regularly released health datasets 
at sufficiently fine spatial and temporal scales needed to 
develop meaningful models. In some places, health datasets 
are released every 5 to 10 years. Moreover, there can be 
difficulty in reading data that are collected on paper forms 
and researchers may have confusion about what is being 
reported when working with cumulative data that is hard to 
unpack. Finally in some cases, data are not always generated 
using best practices for collecting and reporting.

Furthermore, although some countries in the Americas and 
Europe now have electronic records of health and climate 
data available for at least two decades, electronic databases 
of epidemiological records in other countries may remain 
limited, with reporting from 2016 onward. The same patterns 
are observed in Asia, as complete datasets are available in 
Thailand (40 years) and Vietnam but other parts of the region 
have many more limitations. Major data gaps are reported 
from countries in Africa, where long-term records of climate 
and health data may be rare or unavailable. In addition, 
participants identified a mismatch in the spatial and temporal 
scale of climate and disease data. 
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2.3.3 Barriers to the Use of Climate-
Disease Models

Respondents identified barriers to the use of climate-disease 
models including issues in translating scientific models into 
common language useful to decision makers, lack of political 
will and national mandates for climate and health work, lack 
of funding for training and infrastructure, and poor planning. 
Some places lack personnel with the technical skills and 
expertise required to gather, process, and publish data 
despite tremendous will. 

In most parts of the world, interviewees reported a lack 
of sustained funding for climate and disease modelling 
initiatives. This lack of funding makes it difficult to set up 
long-term training programs to promote local expertise. This 
leads to short-term consultancies which can produce the 
models but maintaining / operationalizing the modelling tools 
becomes very challenging for local partners. 

“...but people don’t know 
how, it’s not a matter of tools 
but it’s how to use them...”
WTSSI_001

The lack of funding also results in inadequate infrastructure 
for data entry, processing, storing, and analysis. In some 
areas, computing infrastructure may be limited, with frequent 
loss of internet and power. As a result, data can be lost and 
backups may not be available.

Interviewees also described the impact of the COVID19 
pandemic and other disasters on stretched health systems. 
During periods of crisis, such as the COVID-19 pandemic 
and other disasters, the health sector response has required 
essential personnel to be redirected, which has made data 
sharing and multi-sectoral projects extremely difficult to 
sustain. 
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2.3.4 Ways To Increase Engagement 
With Policy And Decision Makers

Interviewees recommended the following actions to 
increase engagement and improve communication 
between the modelling community and decision 
makers: 

1 —
Training Programs

Invest in local training programs: 
Training in the proper use of R, Python, 
and Microsoft Office (Excel) is needed 
for local tool users from the public 
health sector and other sectors. This 
sort of training will allow local partners 
to adapt existing tools, develop their 
own tools, and translate available tools 
for local decision making needs.

2 —
The next generation

Invest in the next generation of 
climate-health scientists and 
practitioners through the creation 
of new university programs and 
supported career paths at the climate-
health nexus, particularly in countries 
that are already bearing the greatest 
burden of climate-sensitive infectious 
diseases. Create a supported cohort of 
climate-health professionals that can 
work collaboratively across sectors 
at the science-policy interface. These 
experts will ensure that modelling tools 
can be co-created and implemented to 
meet local needs.

3 —
Accessible interfaces

Invest in user friendly interfaces: 
Participants also suggested 
applications or user-friendly interfaces 
such that model outputs are easier 
for the public to understand. Such 
an application should adopt best 
practices in scientific communication, 
using accessible language and visuals.
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2.3.5 Modelling Experts Take On 
Existing Tools

General Findings

Researchers reported that tool usage depended on the 
level of training of the user. They noted that most software 
has a steep learning curve, which is difficult to learn in a 
few technical training workshops. Participants also noted 
the importance of discussing software preference with 
the tool users from the beginning of the co-development 
process to ensure sustainability.

Researchers agreed that modelers need to adapt to the 
location in which they are working and not vice versa. In 
some areas of the world there are limited resources for 
data entry or reporting (i.e., lack of electronic data entry). 
However, some participants reported that using paid 
software can sometimes be beneficial (i.e., powersym 
or Stella). These software may help decision makers 
to better understand the modelling process from the 
beginning, more than some open-source software such 
as R. Interviewees also noted that some software may 
not be appropriate for creating operational models in 
countries with limited resources, but can be useful for 
initial discussions.

Researchers recommended incorporating a computer 
scientist or software engineer into project teams. Having 
these experts on the team can be especially useful to 
debug the model and smoothly transition the model into a 
tool.

Modelers indicated that the ultimate goal would be a multi-
pathogen platform that can simultaneously serve different 
regions of the world. However, there are many challenges, 
including the lack of uniform protocols for health data 
collection, cleaning, quality control, etc. Researchers hope 
to be able to use the initial existing forecasting systems as 
pilots that can inform the development of more adaptive 
and versatile platforms.

Researchers also noted that more secure funding for 
countries to manage and operate their own systems is key. 
Without sustained funding, the tool development is limited 
to an academic exercise. 

Modelers also noted the lack of existing modelling tools 
for regions of the world where infectious diseases are 
expanding or are projected to emerge in the future.

“There are a lack of tools to 
assess climate-ID linkages 
in areas of potential disease 
expansion, such as dengue 
in the southern cone of South 
America and other temperate 
latitudes around the world.”
WTSSI_002
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2.3.6 How Can Tools Better Serve 
Decision Making?

We identified three major gaps in the development and 
implementation of tools for climate-sensitive infectious 
disease 1) the level of miscommunication between 
researchers and policymakers, 2) lack of training of tool 
users to ensure sustainability and usefulness of models for 
local decision making needs, and 3) the lack of useful public 
visuals and display of findings. 

1. Promoting political 
mandates for climate 
and health research and 
practice.

2. Enhanced 
communication and 
information exchange to 
align technical vocabulary 
across different sectors 
to ensure co-creation and 
user-led research/tool 
development.

3. Proper training of users. 
Workshops may work in the 
short-term, but a long-term 
investment in university 
programs and the creation 
of supported career paths 
at the climate-health 
interface will ultimately aid 
in sustainably developing 
and maintaining tools that 
reflect local needs.

4. Improving engagement 
and communication 
between researchers 
(tool developers) and 
policy makers through 
collaborative co-creation 
processes

5. WMO/WHO task forces 
to increase adapted 
services and establish 
multinational, regional and 
multi-sectoral collaboration.

6. Systematically 
encouraging 
implementation science.

7. Sustained funding 
opportunities that go 
beyond academic 
exercises.

8. Capacity building 
focused on co-learning 
processes for tool 
development and 
implementation.

9. Focus efforts on tools 
that are pragmatic, simple, 
usable and sustainable to 
ensure that tools can be 
useful over the long-term to 
local decision makers.

10. Creation of tools that 
are multi-functional and can 
be repurposed.
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3. Conclusions and recommendations

Conclusions: Key funding recommendations

The findings from this project indicate a number 
of opportunities to invest in the development and 
implementation of climate driven infectious disease 
modelling tools. 

Transition validated models into tools and improve the 
interfaces of existing tools. 

There are useful models and code associated with 
publications that exist on online repositories like GitHub, but 
there is a gap in translating this research into automated, 
packaged tools. Researchers who are developing these 
models can be connected to software engineers. An 
investment in these validated models could result in the rapid 
creation of new tools. Existing tools can also be improved 
through an investment in the creation of user friendly 
interfaces.

Tools for neglected disease groups. 

There is an opportunity to develop tools for climate sensitive 
disease transmission modes that have been neglected (e.g., 
respiratory, foodborne, soilborne, waterborne). There is 
also an opportunity to develop tools for regions of disease 
emergence, which currently lack tools. These investments 
will increase the preparedness of the public health sector for 
the next pandemic.

Equity and diversity of investigators from the most 
affected regions. 

There is a need to support teams that are led or co-led 
by researchers and other partners from the Global South, 
where the impacts of climate sensitive infectious diseases 
are the greatest. This would also increase the opportunity to 
cross-pollinate knowledge and experiences between regions 
that are currently endemic for climate sensitive diseases 
and regions of projected disease emergence due to climate 
change.

Co-creation of tools. 

Transitioning research to public health practise must be 
accounted for from the project outset since the data that 
feed into the model and the model output (e.g., interfaces) 
need to align with decision making processes identified by 
public health professionals. To achieve this, transdisciplinary 
project teams can include academic partners with sectoral 
partners, to ensure that researchers and end-users co-create 
models, eliminating the last mile problem.

 

Multi-scalar tools. 

There is a need to develop tools across a range of spatio-
temporal scales to capture climate and disease processes at 
different scales and to support decision making needs across 
scales. An analysis of the gaps in the spatial and temporal 
data infrastructure would provide important guidance on gold 
standards.

 

Policy action. 

There is interest from the climate and health sectors to work 
together to co-create modelling tools. However, often the 
sectors lack clear mechanisms for data sharing or lack a 
political mandate to engage in these efforts. There is a need 
to influence and inform policies that encourage intersectoral 
collaboration and data sharing to address climate impacts on 
health. 

 

Science communication needs. 

There is an opportunity to improve the communication 
between modelers and decision makers, such as the 
creation of useful public visuals that decision makers can 
use to create and enact evidenced based policy. Science 
communication experts and graphic designers should 
be incorporated into research teams. There is also an 
opportunity to translate available information on tools for 
non-English speaking countries.

 

Capacity building for tool users. 

There is a critical need to train and sustain the next 
generation of tool users, such as local experts in ministries 
of health, through training materials that are freely available 
in different languages, the creation of university training 
programs, and supported career paths at the climate-health 
interface.
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Appendix B 
Expert Interviews

B.1 : Datasets and tools used for climate-sensitive 
infectious disease forecasting and prediction
When working on climate-sensitive infectious disease 
forecasting and prediction, researchers, policy and decision 
makers often face a lack of quality data required for optimal 
targeting of the intervention and surveillance. Although 
some cross-sectoral collaborators working at regional levels 
collect data from specific countries involved in projects and 
integrated surveillance, researchers and tool developers 
mentioned the use of various datasets including:
• Epidemiological bulletins and case data from 

governmental agencies such as ministries of health 
(contingent upon institutional agreements)

• World Health Organization and Regional Offices Database
• Institutional data libraries
• GitHub
• Climate data store
• National Oceanic and Atmospheric Administration (NOAA)
• Regional climate data archive center [Climate Data Online 

(NOAA)]
• The Climate explorer
• Worldclim
• Dataclim package
• Observational satellite systems
• The North American Multi-Model Ensemble (NMME)
• Census and auxiliary data from Governments such as the 

national arboviral surveillance system managed by US-
CDC and state health departments (ArboNET) 
 
 

B.2: How organizations access and curate data and tools
Although it can be complicated to establish formal 
partnership and multilateral agreements to access data, in 
many places, memorandum of understandings (MoU) are 
set up among sectors. As examples, participants mentioned 
agreements with the European Centre for Disease Prevention 
and Control (ECDC) and the World Health Organization 
(WHO). However, in some European countries, the Ministries 
of Health (MOH) release data publicly. Data is curated before 
being posted into their systems.

They went further to explain that in other settings, data are 
provided directly by sectoral stakeholders after agreements 
through contracts with strict close on data privacy. In some 
cases, data is gathered directly from open websites and 
repositories.

 

B.3: Person in charge of data acquisition
Gathering dataset varies depending on the institutions 
and settings. Individual researchers, PhD students or 
Postdoctoral researchers are in charge of gathering data for 
each project. For regional works, hired consultants or project 
coordinators are responsible to gather data after stakeholder 
engagement meetings. 
 
 
 
 
 
 
 
 

B.4: Storage of dataset after acquisition 
Once a dataset is acquired, storage methods depend on the 
data agreement:
• If it is publicly available it can be stored on any computer 

or online repository.
• If it is confidential and has an agreement, special 

requirements such as double encryption and no right to 
copy onto local disks - are required.

• Encrypted servers in some organizations. 
 
 

B.5: Description of a typical modelling processes (from 
data collection to results dissemination, including the 
software packages used)
Prior to the description, participants indicated the 
importance of collaboration between sectors towards co-
creation processes.
• The process, generally, starts by bringing the stakeholders 

on the same table to identify exactly what they want 
and what is feasible. Although this phase is crucial, 
sometimes it is skipped. 
 
“Another way to go about it instead of asking, is what 
decisions do you make on a daily business and how we 
can support those decisions.” WTSSI_002 

• Data gathering from different sources and in different 
formats.

• Initial inventory and consistency check. Sometimes, this 
part may lead to restarting the process in an iterative 
way.

• R Project for Statistical Computing is widely used for data 
cleaning, processing and modelling.

• Meetings with stakeholders for testing and validation.
• Training for users and policy makers.
• Technical reports, scientific publications and websites are 

used for dissemination.
* Many participants noted that sustainability was a huge 
issue in the modeling process as funding usually does 
not support long-term updating of the system leaving the 
platform highly unusable for policy makers.
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Appendix C 
Logistical Insights from Interviews

C.1: Task efficiency
In R there are no standard packages to check efficiency, but 
there are some codes available that aim to check data for 
issues. Depending on what functions you are using,  R does 
not have very efficient updates and this can interfere with 
usage.

C.2: What tasks could be performed
In R you can perform anything you could imagine, any 
kind of model, however it is not as simple as plug and play 
which may be better for decision makers. R can also run 
statistical models, transmission models, processed based 
models, visualize data, R markdown-html, R Shiny apps. 
You can also run basic stats, times series analysis, GIS 
mapping , projection, raster manipulation. The online apps 
created in R are good for research demos but not great for 
decision makers. Powersym can take complex systems with 
complicated feedback mechanisms and create very visual 
depictions of the model and conduct multiple realizations at 
same time. It can also make a very powerful set of graphics 
and plots whereas this kind of work would not be as intuitive 
with R.

C.3: Level of difficulty in training of new users 
Participants reported that coding in general is challenging 
and has a steep learning curve particularly in R. Paid 
platforms like Stella and Powersym are more intuitive 
because they use more design framework for visualization 
along with the option to view the mathematical formulas. 
R requires a lot of practice, trial, and error to learn how to 
navigate the software and learn its full capabilities. There are 
lots of free teaching tools available but many times it can 
present language barriers.

C.4: Real-time nature of the system (i.e. live streaming 
capabilities)
• R has real time live streaming capabilities
• Paid options for these systems are also available but less 

commonly used 
 
 

C.5: Crashing/ lagging, ability to debug, report generating
Users must have a strong internet connection when 
downloading any data from online

Users that have more powerful computers will have less 
lagging and an overall smoother work process

Using cloud-based servers (i.e. Amazon Web Services and 
GitHub repositories) can allow for usage on more powerful 
computers than the average person may own. (Gaining 
access to these computers can be challenging in resource 
limited areas).

Crashing and lagging occur less often when the user has 
more experience to know what triggers these outcomes.
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