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Microorganisms drive much of the Earth’s nitrogen (N) cycle, but we
still lack a global overview of the abundance and composition of the
microorganisms carrying out soil N processes. To address this gap, we
characterized the biogeography of microbial N traits, defined as eight
N-cycling pathways, using publically available soil metagenomes. The
relative frequency of N pathways varied consistently across soils, such
that the frequencies of the individual N pathways were positively
correlated across the soil samples. Habitat type, soil carbon, and soil
N largely explained the total N pathway frequency in a sample. In
contrast, we could not identify major drivers of the taxonomic com-
position of the N functional groups. Further, the dominant genera
encoding a pathwaywere generally similar among habitat types. The
soil samples also revealed an unexpectedly high frequency of bacte-
ria carrying the pathways required for dissimilatory nitrate reduction
to ammonium, a little-studied N process in soil. Finally, phylogenetic
analysis showed that some microbial groups seem to be N-cycling
specialists or generalists. For instance, taxa within the Deltaproteo-
bacteria encoded all eight N pathways, whereas those within the
Cyanobacteria primarily encoded three pathways. Overall, this trait-
based approach provides a baseline for investigating the relation-
ship between microbial diversity and N cycling across global soils.

nitrification | nitrogen fixation | ammonia assimilation | metagenomics |
dissimilatory nitrite reduction

Agrand challenge for this century is to predict how environ-
mental change will alter global biogeochemical cycles. The

field of biogeography has an important role to play in this effort
(1). Environmental change is altering the distribution of bio-
diversity, which in turn is a key driver of biogeochemical pro-
cesses (2, 3). Historically, biogeography has viewed biodiversity
through a taxonomic lens, primarily resolving species distribu-
tions. However, a focus on traits—particularly those involved in
ecosystem processes—may offer a clearer link between bio-
diversity patterns and biogeochemistry (4–6).
These ideas are particularly relevant for microorganisms. Mi-

crobes catalyze most of the biological transformations of the major
elements of life (7), and because of their sheer abundance they
account for a large pool of elements in living matter (8). Fur-
thermore, like plants and animals, microbial taxonomic composi-
tion varies over space (9, 10), and this variation can influence
ecosystem processes (11–14). Thus, a consideration of microbial
traits should improve efforts to connect biogeographic patterns
and ecosystem processes (15).
Here, we provide a first characterization of the global bio-

geographic patterns of microbial nitrogen (N) cycling traits in soil.
Microbially driven transformations regulate biologically available N
through exchange with the atmosphere (via N fixation and de-
nitrification) and loss by nitrate leaching. They also influence the
forms of N available for plant uptake. At the same time, human
activities have altered, and continue to alter, the N cycle by increasing
the amount of reactive N in the biosphere (16, 17). At local scales,
N addition consistently shifts microbial composition in soils and
other ecosystems (18, 19). The distribution of microbial traits might
therefore be relevant for understanding current and future N cycling.
The taxonomic composition of soil microorganisms is correlated

with spatial variation in climate, plant diversity, pH, disturbance, and

many other factors (20–23). These biogeographic patterns help to
identify factors that select on the entire suite of microbial traits. In
this study, we reverse this direction of inquiry. We first char-
acterize the patterns and drivers of just handful of traits asso-
ciated with N cycling and then ask which taxa comprise these
functional groups.
To quantify the abundance and composition of N-cycling traits,

we analyzed ∼2.4 billion short-read sequences from 365 soil
metagenomes sampled from around the globe. From this dataset,
we identified sequences that indicate the potential for a micro-
organism to perform one of eight N pathways that convert in-
organic N to other inorganic forms or microbial biomass. We then
quantified the frequency and taxonomic association of microor-
ganisms carrying these pathways in each sample. If a gene from a
pathway was detected, we assumed the presence of the entire
pathway in the organism. To compare the frequencies among the
N pathways, we standardized for the number of genes (2–20) in
each pathway. Although metagenomic sequences provide a mea-
sure of a community’s trait diversity (24), the presence of a trait
does not indicate how it is being used in the community. Thus, we
cannot determine whether genes in the N pathways are expressed
or the rate at which N is being transformed. However, assaying
traits based on metagenomic sequences are parallel to other trait
metrics used to describe an organism’s functional potential, such
as nutrient uptake affinity or temperature optimum for growth.
The global N trait dataset allowed us to address four main

questions. First, what are the overall frequencies of the different
N pathways in soil? We expected the frequencies to vary greatly
by pathway. Indeed, the ability to perform nitrification is re-
stricted to few microbial taxa, whereas ammonia assimilation is
probably present in almost all taxa. Second, what drives variation
in the frequencies of N pathways among soil samples? We hy-
pothesized that N pathway frequencies would vary primarily by
habitat type, which reflects major differences in plant commu-
nities and therefore N inputs into soils. Third, what are the main
taxa encoding each N pathway? Surprisingly little is known about
the dominant lineages encoding N-cycling traits across global
soils. We therefore expected to find previously unrecognized,
prominent players, particularly for the less-studied pathways
such as dissimilatory nitrate to ammonium (DNRA). Finally,
what underlies compositional variation among soil samples in
microorganisms encoding N pathways? We hypothesized that the
taxa responsible for each pathway would vary greatly by habitat
type, because the habitat would select for specialized taxa. We
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further predicted that soil pH—previously identified as an im-
portant driver of soil composition (25, 26)—would also influence
compositional variation within microorganisms encoding N-cycling
traits.

Results
Metagenomic data from surface soil samples were retrieved from
the metagenomics analysis server (MG-RAST) (27). After cu-
rating the samples for sequence and metadata quality, the final
365 samples represented 118 unique locations from 10 distinct
habitat types covering natural and human-dominated systems
(Fig. 1 and Dataset S1). Sequencing depth varied greatly among
the samples but was not overtly biased toward any particular
habitat type (Fig. S1). To standardize for sequencing depth, we
report the abundance of each N pathway as its frequency in a
sample. The trends observed were similar whether pathway fre-
quency was normalized as the number detected per annotated
sequence or per marker gene (based on 30 conserved, single-
copy genes) (Fig. S1).
Bacteria dominated the metagenomic libraries, comprising 95%

of all sequences, followed by 3% for Fungi and only 2% for Ar-
chaea. The fraction of fungal sequences in metagenomic libraries
is known to be lower than their contribution to soil microbial
biomass (10). We therefore concentrate our analyses on Bacteria
and Archaea and report only general trends for Fungi. For in-
stance, the proportion of total sequences of Bacteria, Archaea,
and Fungi varied across habitat type (G-test of independence;
P << 0.001) (Fig. S2). Archaea ranged from 0.9 to 11% of all
sequences by habitat, with the highest percentage detected in
deserts. The ratio of fungal to bacterial sequences was particularly
high in temperate forest soil, as previously observed (28).

Frequency of Soil N Pathways. On average, 0.5% of all annotated
sequences in a soil sample were associated with one of the eight
N pathways (Fig. 2A), or an average of 3.3 and 4.7 N pathways
per marker gene for Bacteria and Archaea, respectively. The
frequency of the individual pathways varied by several orders of
magnitude (one-way ANOVA P < 0.001; F = 74.21, df = 7) (Fig.
2B). Bacteria and Archaea displayed similar trends in their rel-
ative frequency of N pathways except for the absence of the
dissimilatory nitrite reduction to ammonium pathway in Ar-
chaea. Fungal sequences were only associated with assimilatory
pathways, including ammonia assimilation, assimilatory nitrate to
nitrite, and assimilatory nitrite to ammonium.
Across all domains, the most common pathway was ammonia

assimilation (Fig. 2B). For instance, among the Bacteria, an av-
erage of 280 ammonia assimilation pathways were detected for
every million annotated bacterial sequences. In comparison, ni-
trification and N fixation were the least common pathways and
detected only 6.1 and 4.6 times per million sequences, respectively.
Notably, the relatively unstudied dissimilatory nitrite reduction to

ammonium pathway was slightly more common that these two
pathways, detected on average 9.3 times per million sequences.
Across all soil samples, N pathway frequencies were over-

whelmingly positively correlated for both the Bacteria and Ar-
chaea (Fig. 3 A and B). To examine differences in pathways
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Fig. 1. The locations (n = 118) sampled to create the soil metagenomic li-
braries (n = 365) used in this analysis. The samples represent 10 distinct
habitats including agriculture (n = 19), cold desert (n = 6), desert (n = 15),
grassland (n = 14), lawn (n = 4), pasture (n = 2), temperate forest (n = 12),
tropical forest (n = 34), tundra (n = 7), and wetland (n = 5).
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Fig. 2. N pathways and their frequencies. (A) N pathways considered in this
study. The numbers in parentheses are the number of genes targeted for
each pathway. Assimilatory pathways are in orange and dissimilatory
pathways in blue. (B) Box plot of the frequency of each N pathway in a
metagenomic library for Bacteria, Archaea, and Fungi. To compare across
domains, frequencies are calculated as per annotated sequence in each
domain. The upper and lower bounds of boxes correspond to the 25th and
75th percentiles, with a median line shown. Whiskers represent 1.5*IQR
(interquartile range). Dots represent outliers.
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beyond the trends shared by all, we calculated the residuals of the
frequency of each pathway regressed against the frequency of all N
pathways in a sample. This residual variation was also significantly
correlated among many of the N pathways (Fig. 3 C and D). For
instance, denitrification was highly positively correlated with dis-
similatory nitrate reduction to nitrite within both Bacteria and
Archaea (R2 = 0.86 and 0.97, respectively, P ≤ 0.001). This re-
lationship is expected, because dissimilatory nitrate reduction to
nitrite is the first step of the complete denitrification process;
however, we separated the two steps here, because nitrate re-
duction to nitrate is also the first step in DNRA (29). Similarly, we
separated DNRA into its two pathways: dissimilatory nitrate re-
duction to nitrite and dissimilatory nitrite reduction to ammonium
(Fig. 2A). Among Bacteria, the assimilatory nitrite to ammonium
pathway residual was negatively correlated with all other path-
ways. Likewise, the residual frequency of the ammonia assimila-
tion pathway was negatively correlated with all other N pathways
in both Bacteria and Archaea. N fixation generally showed weak
or no correlation with other pathways.

Drivers of N Pathway Frequencies. The frequency of all N-cycling
traits (summing across all pathways) varied greatly among soil
samples, and initial analyses revealed broad biogeographic patterns.
On average, the highest frequencies of total N pathways were de-
tected in tropical forest and human-dominated (pasture, lawn, and
agriculture) soils, whereas the lowest frequency was observed in
cold deserts (Fig. S3). Total N pathway frequency also tended to
decrease with increasing latitude (R2 = 0.22, P < 0.05; Fig. S4).
To disentangle the drivers behind these patterns, we performed

a multivariate regression analysis including habitat type and en-
vironmental parameters known to influence microbial abundance
and composition (30, 31). Local measurements were not available
for most samples; instead, we estimated these variables from
secondary sources. For Bacteria, the regression model explained a
large and significant proportion of the variability in the frequency
of total N pathways (R2 = 0.58, P << 0.001; Table 1). Habitat type

contributed most to this model, both directly (positively related to
total N pathways) and through interactions with soil carbon and N.
The regression model for Archaea explained less variability in
total N pathway frequency than for Bacteria (R2 = 0.43, P < 0.001;
Table 1). An interactive effect between carbon and N contributed
the most to the model, and habitat was only important through an
interactive effect with temperature.
We next examined the drivers of individual N pathway fre-

quencies. Due to high covariance between pathways (Fig. 3 A and
B), we fitted regression models to the total-frequency-corrected
residuals for each pathway. These models varied greatly in their
ability to explain this additional variation (Table 1). For example,
the models for the N fixation pathway explained 80% and 63% of
the variation among samples in Bacteria and Archaea, respectively
(P << 0.001). In contrast, the same parameters did not explain any
variation in the frequency of the dissimilatory nitrite reduction to
ammonium pathway in Bacteria.
Among the significant models, habitat type was an important

predictor of the individual pathway frequencies (Table 1). Habitat
also interacted with other factors including precipitation, tempera-
ture, and soil N to influence the frequency of some pathways. For
instance, denitrification frequency increased with temperature in
deserts but decreased with temperature in tropical forests. Similarly,
ammonia assimilation frequency increased with soil N in temperate
forests but decreased with soil N in tropical forests. Soil carbon,
which seemed to be a primary driver of total N pathway frequency,
did not explain differences in the frequency of individual pathways in
Bacteria. Including estimates of N deposition in these models only
improved the denitrification model (R2 increased from 0.41 to 0.48);
denitrification frequency increased with increasing N deposition.
The models for individual pathway frequencies in Archaea gen-

erally explained less variation than those for Bacteria, perhaps due to
the lower number of sequences per sample (Dataset S1). However,
for the significant models, the individual N pathways were often
best explained by the same parameters as the Bacteria. For in-
stance, habitat type and habitat by temperature were the most
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Fig. 3. The relationships between N pathway frequencies. Correlations between N pathways encoded by Bacteria (A) and Archaea (B) across the samples.
(C and D) Correlations between the residuals of each pathway regressed against the total frequency of all N pathways.
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important predictors of N fixation frequency within both do-
mains. Likewise, habitat, habitat by precipitation, and habitat
by temperature contributed to the variation in assimilatory ni-
trate to nitrite frequency in both Archaea and Bacteria.

Taxonomic and Phylogenetic Distribution of N Pathways. A diverse
range of microorganisms, encompassing 402 bacterial and 53 ar-
chaeal genera, encoded the N pathways. We first investigated the
association of pathways within the same genera (Fig. 4 and Fig. S5).
All genera for which we detected over 10 sequences carried the
ammonia assimilation pathway. Genera carrying the pathway to
complete the second half of denitrification also generally carried
the first half of the pathway, dissimilatory nitrate to nitrite re-
duction. The same genera carrying these denitrification pathways
sometimes, but not always, carried the dissimilatory nitrite re-
duction to ammonium pathway, or the second part of the complete
DNRA process (Fig. 4 and Fig. S5). Some genera within the
Gamma-, Delta-, and Epsilonproteobacteria (e.g., Edward-
siella, Wolinella, and Anaeromyxobacter) contained all three
pathways. Indeed, denitrification and DNRA has recently
been shown to be present and functional in the same bacteria
(29, 32). We also detected genera that only carried the dis-
similatory nitrite to ammonium pathway (in addition to am-
monia assimilation), as was the case for five genera within the
phylum Bacteriodetes.

More broadly, soil genera, and the phyla they fall into, varied
in their degree of pathway specialization. Genera within the
Cyanobacteria seemed to be specialists, carrying primarily the
assimilatory nitrite to ammonium and N fixation pathways. In
contrast, genera within the Deltaproteobacteria seemed to be N-
cycling generalists, harboring up to six pathways (in addition to
ammonia assimilation). Note, however, that these patterns do not
distinguish between whether these genera are made up of gener-
alists that encode many pathways or multiple specialists that encode
specific pathways.
Focusing on each pathway individually revealed the most prom-

inent taxa carrying the pathway across all soil samples. Here we
consider two contrasting pathways, both in terms of their taxonomic
distribution and the degree to which they have been studied. First,
the abundance of the N fixation pathway in the soil samples was
distributed broadly among both Archaea and Bacteria (Fig. 4 and
Fig. S5). The most abundant N fixers detected were concentrated
within the phylum Proteobacteria, with notable exceptions among
the Chlorobi, Firmicutes, and Cyanobacteria (Fig. 5A). Most
sequences were closely related to N-fixing genera that might be
predicted to be common in soil, such as Bradyrhizobium and
Burkholderia. Other abundant genera were less expected. For ex-
ample, Azoarcus is an organism studied for its abilities to degrade
soil contaminants (33), and Pectobacterium (Gammaproteobac-
teria) is known primarily as a plant pathogen (34). Indeed, although

Table 1. Variation explained by the environmental variables in the regression models of the frequency of all (total) and
individual N pathways

Individual pathways (residuals)

Environmental
variables Total

Ammonia
assimilation

Assimilatory
nitrate to
nitrite

Assimilatory
nitrite to
ammonia N fixation Nitrification

Dissimilatory
nitrate to
nitrite Denitrification

Dissimilatory
nitrite to
ammonia

Bacteria
Habitat (H) 0.14 0.02 0.23 0.07 0.29 0.11 0.06 0.09
Precipitation (P) <0.01
Temperature (T) <0.01 0.02 0.02
pH
Organic carbon (C) 0.12 <0.01
Total N 0.05 0.13
H × P <0.01 0.07 0.08 0.32
H × T 0.09 0.23 0.31 0.21 0.03 0.31
H × pH <0.01 0.09 0.05
H × C 0.1
H × N 0.17 0.49 0.06
P × T 0.02 0.05 <0.01
C × N <0.01

Adjusted R2 0.58 0.51 0.5 0.36 0.8 0.45 0.41 0.41 NS

Archaea
Habitat 0.08 0.09 0.03 0.12
Precipitation <0.01
Temperature 0.02 0.03
pH <0.01
Organic carbon
Total N 0.05 0.04
H × P 0.21 0.09
H × T 0.09 0.18 0.33 0.13
H × pH 0.12 0.06
H × C
H × N
P × T
C × N 0.34

Adjusted R2 0.43 NS 0.52 NS 0.63 0.22 NS 0.21 NA

The models for the individual pathways are based on the residual frequencies of the pathway after correcting for the Total N pathway frequency (see text).
Estimates of the fraction of explained variation are only reported for significant variables (P < 0.05). Samples were only included when all environmental
variables could be obtained for that location (n = 99). NA, not assessed; NS, not statistically significant.
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it is known that Pectobacterium encodes the suite of N fixation
genes, it remains unclear whether they are functional (35).
Second, the pathway encoding dissimilatory nitrite reduction

to ammonium was also broadly distributed across soil bacteria
(Fig. 4), as noted before (36). However, the dominant soil taxa
were restricted to two phyla, the Deltaproteobacteria and
Verrucomicrobia (Fig. 5B). Verrucomicrobia are known to be
abundant in soils, but their ecological role remains unclear (37,
38). The pathway’s most abundant genus, Anaeromyxobacter
(phylum Deltaproteobacteria), is common in agricultural soil
and has recently been shown to carry out a previously un-
recognized process of nondenitrifying N2O reduction to N2
(39). The relative abundances of genera encoding the other six
N pathways in the soil samples are reported in Fig. S6.

Drivers of Taxonomic Composition by N Pathway. The same envi-
ronmental variables that explained the overall frequency of the N
pathways well explained much less of the variation in the taxo-
nomic composition of the organisms encoding the pathways. For
the eight pathways, the models only explained 7–19% of the
composition variation of the individual N pathways (Table S1).
However, as for pathway frequency, habitat type was the best
predictor of composition, explaining up to 14% of the composi-
tional variation in the assimilatory nitrite to ammonium pathway.
Temperature also explained 11% of the compositional variation
for the nitrification pathway. All other predictors, including pH,
explained at most 3% of the variation for any pathway.
A closer examination of two pathways confirms weak com-

positional differences between the habitats. The 15 most abun-
dant genera carrying the N fixation pathway were similarly
abundant across all habitats except in cold deserts (Fig. 5A). The
most abundant genera encoding the dissimilatory nitrite re-
duction to ammonium pathway displayed greater variability
among habitats (confirming the model results in Table S1), but
of these only one genus (Chlorobium) seemed specialized on a
habitat (wetland) (Fig. 5B).

Discussion
Here, we used metagenomic data to characterize the bio-
geographic patterns of microbial N cycling traits in soil. The
advantage of this approach is that it allows us to identify the
traits—and the organisms harboring them—involved in many
key functions at once. Specifically, the analysis provides a com-
prehensive map of the dominant lineages involved in eight N
processes. The approach also allowed us to search all known
genes in a pathway, while avoiding primer biases toward partic-
ular lineages (40).
The overall structure of microbial N traits—the relative fre-

quency of the eight pathways—seems to be quite consistent across
soils. This is not unexpected but had not been previously tested.
For instance, the ammonia assimilation pathway was relatively
common, and the pathways for N fixation and nitrification were
relatively rare, as observed previously in soil and other environ-
ments (41–44). Less expected, however, was that N pathway fre-
quencies within a soil sample were overwhelmingly positively
correlated (Fig. 3). This result suggests that soil communities with
high numbers of cells able to use one N pathway also generally
support higher numbers of cells that can use other N pathways.
Greater numbers of metagenomic sequences associated with nu-
trient cycles have previously been interpreted to be indicative of
faster nutrient cycling rates (10). The positive correlations between
pathways within the N cycle would seem to support this hypoth-
esis. We also found a high frequency of Bacteria encoding the
dissimilatory nitrite reduction to ammonium pathway, which leads
to recycling of N in soils. The balance between DNRA and de-
nitrification, which leads to the loss of N to the atmosphere, is
thought to be key to soil N budgets. Our results confirm previous
studies suggesting that this pathway may be more common than
previously thought (45, 46), but the taxa encoding the process in
soil environments remain to be carefully characterized (47).
The frequency of N traits further displayed clear biogeographic

patterns. At the broadest scale, N trait frequency in Bacteria tended
to decrease at higher latitudes, perhaps reflecting a general trend in
N limitation in high-latitude ecosystems (48). Beyond latitude, the
frequency of N cycling traits in soil communities depended largely
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on habitat type as well as soil carbon and N concentrations. N traits
were highest in human-dominated habitats, where N inputs tend to
be high, and tropical forests, which are generally thought to be less
limited by N than temperate ecosystems (49). In contrast, N traits
were lowest in cold deserts (Antarctic and Arctic), which are highly
nutrient-limited (48, 50). However, given the low sample numbers
for some habitat types, it will be important to retest these patterns
as more data accumulate.
Contrary to our hypothesis, the taxa responsible for each N

pathway did not vary greatly by habitat type. Within a pathway,
genera that were dominant in one habitat tended to be dominant
in all habitats. More generally, the environmental variables in
our analyses were poor predictors of the compositional variation
of the N functional groups. One possible reason for this result is
that environmental preferences are conserved below the genus
level and therefore would not be detected by our analysis.
However, this reasoning does not explain why soil pH seems to
have little influence on composition, because pH preference
seems to be conserved at a broader taxonomic level (22, 51).
Perhaps N functional groups are less specialized for a particular
pH environment than microorganisms with other functional

roles, but distinct pH-associated lineages in ammonia-oxidizing
Archaea indicate that this is not always the case (52). Alterna-
tively, the estimates of soil pH might have been too spatially
coarse to detect a pattern.
A well-recognized issue in calculating the frequencies of genes

or pathways from metagenomic data is how to normalize for
overall genome abundance in the library (53). This normalization
step is prone to uncertainties related to variation in mean ge-
nome size among communities. To address this issue, we esti-
mated the frequencies of N pathways in two ways: using a set of
conserved marker genes as well as the total number of annotated
sequences within a domain. The first approach should be sensi-
tive to differences in genome size, whereas the second approach
includes more sequence reads and is thus more statistically ro-
bust. Because the two approaches led to similar findings, we
conclude that the overall patterns in N pathway frequencies are
likely not an artifact of normalization.
In sum, this study provides a foundation for future trait-based

investigations of soil N cycling but also highlights two major chal-
lenges. First, we still know very little about how variability in the
frequency and composition of microbial N traits will affect process
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rates in soil environments (54). Indeed, a recent review found little
correlation between an individual gene’s abundance and the pro-
cess rates that such genes encode. However, assessment of these
links using metagenomic datasets is still needed (55). Second,
assigning function and taxonomy from short-read sequences is
limited by genomic databases where annotations in some cases may
be sparse and/or erroneous (56, 57). The N cycle is an archetype of
this problem, because new N processes and lineages continue to be
identified (39, 58–61). Despite these challenges, the application of
metagenomic data to a trait-based framework offers a powerful
avenue for elucidating the role that microbial communities play in
regulating biogeochemical processes (24, 62).

Materials and Methods
Dataset and Curation. Metagenomic samples (sequencing type “whole ge-
nome sequencing” and environmental package “soil”, n = 809) in the MG-
RAST database (27) were classified into one of 10 habitat types (desert, cold
desert, grassland, temperate forest, tropical forest, tundra, wetland, agricul-
ture, pasture, and lawn). Samples that could not be classified into these hab-
itats (e.g., oil spill, mines, and microbial mats) were not considered further.

Global Positioning System coordinates and sample date associatedwith each
metagenome identification were downloaded from MG-RAST via the R
packagematR (63, 64). Tominimize the problem of pseudoreplication, we only
considered samples from one date per location (the date with the most
samples). Based on the statistics provided by MG-RAST, we further removed
samples if (i) the number of uploaded sequences was equal to the number of
post-QC sequences, which seemed to indicate a preprocessing step; (ii) the
number of identified protein features was <10,000; or (iii) the total bacterial
reads was <10,000. The remaining metagenomic libraries (n = 365) encom-
passed 118 unique locations. These were downloaded using the MG-RAST API
version 3.2 with KEGG database annotations. Each sequence was assigned to
the closest related genus in the database using an e-value of ≤10−5.

Data Standardization Across Metagenomic Libraries. Because sequencing effort
varied greatly among samples, we standardized the bacterial and archaeal
sequences by a suite of conserved, single-copy (i.e., marker) genes to control for
possible variation in average genome size among samples (65) (Fig. S1). The
Kegg orthology numbers for 30 Bacteria and Archaea marker genes (65) were
matched to MD5 IDs using the nonredundant M5nr database. We then
searched for these MD5 IDs in the samples annotated by the MG-RAST server.

The number of marker genes was also highly correlated with the total
number of annotated sequences in a sample (R2 = 0.86; Fig. S1). Thus, when
comparing across Archaea, Bacteria, and Fungi, we standardized the samples
by total annotated sequences. Sequencing effort varied greatly among the
samples but was not overtly biased toward any particular habitat type (Fig. S1).

Identification of N Cycle Pathways. In each metagenomic library, we searched
for sequences from eight N pathways, defined previously in ref. 46. These
pathways included nitrification (number of genes targeted: n = 2), N fixation
(n = 20), denitrification (n = 20), dissimilatory nitrate to nitrite reduction (n =
9), dissimilatory nitrite to ammonia reduction (n = 4), assimilatory nitrate to
nitrite reduction (n = 2), assimilatory nitrite to ammonia reduction (n = 2),
and ammonia assimilation (n = 10) (Fig. 2A). If a gene from a pathway was
detected, we assumed the presence of the entire pathway.

Environmental Metadata. Environmental data were retrieved from a variety of
publically available sources. In all cases, gridded spatial data files were
downloaded, and data were extracted using the R packages raster, rdgal, and
sp (66, 67). The data included average precipitation (millimeters) and tem-
perature (degrees Celsius) from the month of sampling (68), soil pH (69),
total organic carbon (kilograms per square meter) (69), total organic N
(grams per square meter) (70), and N deposition (milligrams of N per square
meter per year) (71). Approximate data grid resolution for precipitation and
temperature was 0.01°, for soil pH and organic carbon was 0.5°, for total
organic N was 0.1°, and for N deposition was 4.0°. Environmental metadata

were assigned to each sample using the associated latitude and longitude
coordinates. Where data were categorized into ranges (soil pH and total
organic carbon), the average value from the range was used.

Statistical Analyses. To compare the relative abundance of N pathways across
samples, we calculated the frequency of each pathway in a sample for both
the Bacteria and Archaea. This frequency is the estimated number of times
the pathway was detected per marker gene detected, or [number of pathway
reads/number of pathway genes searched]/[number of marker gene reads/
30]. Thus, a pathway’s frequency of detection was also standardized for the
number of genes in the pathway.

To test for differences in the frequency across pathways, we used a one-
way analysis of variance, using the aov function in R. To test for correlations
between the frequencies of the individual pathways within a sample, we used
Spearman’s correlation coefficient. To calculate the total N pathway fre-
quency of each sample, we summed the frequency of all eight pathways. We
used lm in R to calculate the residuals of each N pathway against a sample’s
total N pathway frequency.

To tease apart the relative importance of environmental variables on the
frequency of N pathways, we used amultiple regressionmodel (lm function in
R) including the following variables: habitat type, temperature, precipitation,
soil pH, organic carbon, and total N. For this analysis, we averaged data across
multiple samples from the same location at just one sampling time, yielding
118 datasets. Based on a priori expectations (72), we also included the fol-
lowing interaction terms: habitat by temperature, habitat by precipitation,
habitat by soil pH, habitat by organic carbon, habitat by total N, pre-
cipitation by temperature, and organic carbon by total N. To determine the
relative importance of the various significant environmental factors from
our model in contributing to variation in the frequency of N pathways across
samples, we used a backward selection procedure (72, 73). Starting with the
significant terms (P < 0.01) from our original model, we removed variables
one at a time; the differences in R2 values between each step were used to
calculate the relative importance of the independent variable removed from
the model. If there was no change or only a marginal change in R2 when the
term was removed, the term was assigned a relative importance of <0.01.
After the initial analysis, N deposition was added to test whether this pa-
rameter improved the model.

To analyze the composition within each pathway, we calculated the
proportional abundance of the genera in a sample and averaged these
proportions across multiple samples from the same location. We then cal-
culated a Bray–Curtis distance matrix for all sample locations. We used a
distance-based linear model [DISTLM; PRIMER v6; PERMANOVA ++ (74, 75)]
to test the significance and importance (an estimate of the proportion of R2

explained) of the predictor variables for each pathway’s composition, using
a forward selection procedure.

Phylogenetic Visualization. We constructed a phylogenetic tree including a
representative species from all genera encoding N sequences using 16S rRNA
amplicon data (chosen for their sequence quality and length of∼1,400 bp) from
the SILVA database (76). We aligned the sequences using SINA (77) and cre-
ated a neighbor-joining tree with the default parameters in Geneious v9.0.5.
We used the Interactive Tree of Life (iTOL) (78) to plot (i) the proportion of N
pathways (excluding ammonia assimilation) detected within each genus and
(ii) the relative abundance of genera encoding each individual pathway across
the unique sampling locations (n = 118). For the N fixation and dissimilatory
nitrate reduction pathways, we used the ggplot2 package (79) in R to plot
heat maps of the relative frequencies of the 15 most abundant genera
by habitat.
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