

São Paulo School of Advanced Science on Climate Change: Scientific basis, adaptation, vulnerability and mitigation, 3-15 July 2017, São Paulo, Brazil

Trends in nutrients, organic carbon and sediments export to the coastal zone of four Venezuelan rivers with different land-use: Identification of sources.

A. Giuliante¹, T.J. Pérez¹, C.A. Masiello², W.C. Hockaday³, R.T. Barnes², J.C. Hernández¹

¹Centro de Ciencias Atmosféricas y Biogeoquímica (CCAB). Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas, Venezuela, ²Department of Earth Science, Rice University, Houston, TX, ³Deparment of Geology, Baylor University, Waco, TX

Contact: apompett@ivic.gob.ve

INTRODUCTION

It's well known that tropical rivers contribute between 70-75% of the total discharge of total organic carbon (TOC), nitrogen (TN) and total phosphorus (TP) to coastal areas^(1,2,3,4). This discharge is the contribution of weathered, leached, and human-derived material. Alterations by incrased deforestation, urbanization, discharge of sewage and agriculture, have caused changes in the magnitude of primary productivity and organic matter decomposition rates, therefore it is hard to determine if they are a net sink or source of atmospheric CO₂. Additionally, it's estimated that tropical rivers provide about 75% of dissolved inorganic nitrogen (DIN) and 80% of dissolved inorganic phosphorus (DIP) to the open ocean from the shelf, and these estimates are based on very few measurement available⁽⁵⁾. Therefore, characterizing the nutrient export to coastal areas is of crucial importance to improve our current estimates and understanding C and N ocean biogeochemistry in the tropics. In this study we compare rive export of DIN, DIP, dissolved and particulate organic carbon (DOC and POC, respectively) and POC natural abundance of carbon (δ^{13} C) and nitrogen (δ^{15} N) stable isotopes, as indicators of land-derived organic matter in suspended sediments of three mountainous Venezuelan rivers (Tuy, Neveri and Manzanares) and one flat river (Unare) with different land-use. We provide Information about how nutrients discharge is affected by urbanization, agriculture and seasonality and how this export is related to changes in the sources (by correlating δ^{13} C and δ^{15} N in POC).

SAMPLING METHOD

Triplicate 1L water samples monthly at river mouth (January 2009 to November 2014) with submersible pump.

BASINS DESCRIPTIONS

Headwater Basin Cities in Population Precipita- Dischar- Sediment Sediment Land use area

SAMPLING SITES

River flow with speedometer.

■In situ measurements of dissolved O₂, pH, TSS, salinity, conductivity and temperature using a multiparameter.

LABORATORY ANALYSIS

•Dissolved inorganic nitrogen (DIN= $NH_4^+ + NO_3^- + NO_2^-$) and Dissolved Inorganic Phosphorus (DIP): Flow injection analysis (Autoanalyzer Technicon II).

Total Suspended Sediments (TSS): We filtered the three 1L samples using 47mm quartz filters. Stable Carbon and Nitrogen Isotopes in TSS: Automated on-line combustion coupled with conventional isotope ratio-mass spectrometry.

RESULTS AND DISCUSION

	height	area	basin	density	tion ^(a)	ge ^(b) (m/s)	load (103	yield	percentage
	m.a.s.l.	(10 ³		(people/km ²)	(mm)		ton/km ²	(ton/km ²	coverage (%)
		km²)					year	year	
Mountainous	s rivers								
Tuy	2429	660	Caracas	671	835-2400	53.1	66	1000	Urban (11.0)
									Forest (80.0)
									Agriculture (2.3)
Neverí	2280	299	Barcelona	142	912-2000	16.7	3	300	Urban (3.0)
									Forest (86.1)
									Agriculture (6.9)
Manzanares	2300	165	Cumaná	204	400-2000	20.6	3	250	Urban (4.7)
									Forest (94.2)
									Agriculture (4.0)
Lowland rive	r								
Unare	400	22.5	Small	10	400-900	31.2	11	500	Urban (0.4)
			towns						Forest (54.2)
									Agriculture (35.5)

Autoanalizer Technicon II

Basins Export

					-						
	DIN	DIP	DOC	РОС	TSS						
	(kg/ ha yr)										
lountainous rivers											
Tuy	25,61	59,30	15,57	31,56	2,22E+03						
Neveri	1,14	2,18	4,46	2,12	141,03						
Manzanares	0,94	1,90	18,37	9,21	370,16						
wland river											
Unare	0,41	1,09	4,84	1,37	146,40						

Urbanization is the main driver for river export (i.e. Tuy River)^{(2,6).}

REFERENCES

(1) Seitzinger, S. P., Mayorga, E., Bouwman, F., Kroeze, C., Beusen, H. W., Billen, G., Van Drecht, G., Dumont, E., Fekete, B. M., Garnier, J., HarrisonJ. A. (2010). Global river nutrient export: A scenario analysis of past and future trends. Global Biogeochemical Cycles, 24, GB0A08. (2) Wiegner, T.N., Seitzinger, S.P. (2004). Seasonal bioavailability of dissolved organic carbon and nitrogen from pristine and polluted freshwater wetlands. Limnol. Oceanogr., 49(5), pp 1703–171.

(3) Mayorga, E., S. P. Seitzinger, J. A. Harrison, E. Dumont, A. H. W. Beusen, A. F. Bouwman, B. M. Fekete, C. Kroeze, and G. Van Drecht (2010), Global Nutrient Export from WaterSheds 2 (NEWS 2): Model development and implementation, Environ. Modell. Software, 25(7), pp 837–853 (4) Regnier, P., et al. (2013), Anthropogenic perturbation of the carbon fluxes from land to ocean, Nat. Geosci., 6(8), pp. 597–607

Middelburg, J., Fennel K., Jickells, T. What proportion of riverine nutrients reaches the open ocean?. (2016). Global Biogeochemical Cycles, 31, pp 39-58

(6) Bustamante, M., Martinelli, L.A., Pérez, T., Rasse, R., Ometto, J.P., Siqueira Pacheco, F., Machado Lins, S.R., Marquina, S. (2015). Nitrogen management challenges in major watersheds of South America. Environ. Res. Lett. 10, 065007

(7) Redfield, A.C., Ketchum, B.H., Richards, F.A. (1963). The influence of organisms on the composition of seawater. In: Hill, M.N. (Ed.), The Sea, vol. 2. Interscience, New York, pp. 26–77

variability).

Potential global carbon cycle implications

Estimation of CO₂ fluxes using Redfield ratios^(7,8)

- Rivers that are highly impacted by urbanization can potentially emit a large fraction of C to the
- Next goal: CO₂ fugacity measurements in coastal waters impacted by river plume.

Acknowledgements: Funding for this project is provided by Inter American Institute for Global Change through the Nnet project: "Nitrogen cycling in Latin America: drivers, impacts and vulnerabilities (CRN 3005). Also, our work was supported by NSF OCE-0928941, the Rice International Visiting Fellows Program on Energy, the Environment and Sustainability, and internal funding from the Instituto Venezolano de Investigaciones Científicas. Finally we want to thank to Gregorio Maldonado, Loreto Donoso, Anabel Gil and regional fishermen communities for their important

