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Summary
Decision-makers can greatly benefit from risk assess-
ment tools, especially when combining environmental
risk in a social context. We present a novel Bayesian
spatial-temporal statistical procedure that meshes ha-
zard, vulnerability, exposure and risk. The work is cen-
tered on hydrometeorological hazards directly related to
climate variability. Its aim is to provide a prospective
analysis that considers climate change as an element to
modulate hazard.

Data and methodology
The described methodology was applied to the Vargas state
(Venezuela) using measure rainfall data from the hydromete-
orological stations of the Instituto Nacional de Meteorología
e Hidrología. Victim registry was collected from local news-
paper sources, the Centre for Research on the Epidemiology
of Disasters (CRED) and the website Desinventar, while cen-
sus data was provided by the Instituto Nacional de Estadística.
Macroclimatic variables were taken directly from the National
Oceanic and Atmospheric Administration site (NOAAa). The
methodology was applied over a temporal monthly frequency
and spatial resolution of 0.05 × 0.05 degrees. Methodology
outputs are a set of hazard, vulnerability and risk maps that
could be presented at any given quantile. Rainfall hazard maps
are produce by interpolating point data via a spatial-temporal
hierarchical Kriging procedure in which model parameters are
estimated using a Bayesian paradigm (see [2]). Vulnerabil-
ity maps are built using Zero-Inflated Negative Binomial mod-
els that include social and climatic explanatory variables. Ex-
posure maps are produced by estimating-temporal projections
from official census data.

ahttp://www.nhc.noaa.gov/

Risk model
Risk is defined as the expected losses (total population affected) using
the following equation

Rt,s = Et,s

�

ΩH

�

ΩV

Vt,s P(Vt,s|Ht,s)P(Ht,s) dVt,s dHt,s.

where ΩH y ΩV are the hazard and vulnerability domains, Et,s is the exposure

at a given time t and location s, P(Ht,s) is the probability of hazard (rainfall)

at time t and location s, and P(Vt,s|Ht,s) is the probability of vulnerability

conditioned on the hazard at t, s.

Geographic area of study
The figures show the world relative geographic location of Venezuela (left), Vargas state in Venezuela (center) and Vargas state with the climato-
logical stations’ locations (right).
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Results
Hazard, vulnerability and risk maps for March (left hand side) and September (right hand side) (two contrasting
months) for the year 2002. Maps values are the medians for each variable.
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Maps of hazard, vulnerability and risk, March 2002. Maps of hazard, vulnerability and risk, September 2002.

Diagram of methodology
Flow diagram for the production of vulnerability and risk maps.
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Conclusions

• Given a level of hazard of hydrometeorological origin
and a defined vulnerability level, the model identifies
and quantifies zones of high risk.

• The vulnerability model consider the ENSO, precipita-
tion and population density over the number of people
affected.

• The methodology consider uncertainty in rainfall mea-
sure and the affectation level and combine the two
sources of uncertainty into a single measure.
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