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Introduction

Extreme rainfall events are responsible for 
severe human and material losses, 
specially in densely populated urban areas 
such as the city of São Paulo1,2. A skillful 
and reliable precipitation forecast is vital to 
mitigate the impacts of these events. 

The current global operational Numerical 
Weather Prediction (NWP) models are 
unable to resolve convective and 
microphysical processes directly. This 
limitation requires the employment of 
parametrizations. Given the empirical 
nature and limitations of parametrizations, 
the precipitation forecasts of global NWP 
are often poor, specially for extreme 
events.

The goal of this study is to provide an 
operational methodology to improve and 
downscale the short-range (24-hour) 
precipitation forecast in the city of São 
Paulo employing state-of-the-art deep 
learning techniques.

An Artificial Neural Network (ANN) is a 
supervised machine learning algorithm 
very efficient in approximating non-linear 
functions. The multi-layer perceptron is a 
class of ANN consisting of a set of nodes 
organized in fully-connected layers. Each 
node has an associated vector of 
parameters (weights w and bias b) . The 
dot product of the parameter vector with 
the input vector x is activated by a 
function g. The output of a single node of 
the network is given by:

Figure 1 - Multi-layer perceptron scheme.

The backpropagation algorithm is used to tune the 
network parameters to minimize the Root Mean 
Squared error function.  This process is referred as 
"training". 

A Deep Neural Network (DNN) has several hidden 
layers with a large set of trainable parameters. 
Problems such as the vanishing gradient and 
overfitting must be considered in order to train a 
DNN. To avoid this problems we have employed the 
following:

- ReLU activation function3 instead of logistic;
- Dropout4 to avoid overfitting and co-adaptation;
- Stochastic gradient-descent with adaptative 
learning rate5 to improve convergence. 

Results and discussion

Deep Neural Networks

A 25-year (1985-2010) dataset was used to train the 
DNNs and a 5-year (2011-2015) dataset to evaluate 
the results. The precipitation data were extracted 
from CHIRPS (Climate Hazard Infrared Precipitation 
with Station data) in a 0.15o grid. The explanatory 
variables are output variables from the 1o GFS 0 UTC 
model run (Table 1). The model variables were 
extracted in the 9 closest grid points to the city of 
São Paulo. Additionally, 3 climatic indices were used 
as explanatory variables (AMO, SOI and PDO).

Variable name        Height (m)     Forecast time (UTC)

Zonal wind    

Meridional wind

Precip. water 

Temperature

CAPE

CINE

Pressure

10

10

Integrated

2

Integrated

Integrated

Mean sea-level

12

12

12

12 and 21

12

12

12

Table 1 - Explanatory variables from GFS 0 UTC  model run
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Eleven DNNs were trained to downscale the 
1o input variables into a 0.15o grid covering  
São Paulo. Figure 2 shows the total 
precipitation of 2015 as forecasted by the 
DNNs and GFS (sum of the 24-hour 
forecasts) and  CHIRPS observational data 
as reference. The DNNs provided a 
significative improvement on the 
quantification of the annual precipitation 
and the spatial distribution of the rain 
within the city.

Figure 2 - Total precipitation in 2015 as forecasted by the DNNs, 
GFS and observed by CHIRPS.

Figure 3 shows the probability of detection 
(POD) and the false alarm rate (FAR) of 
rainfall events above a given percentile in 
São Paulo (2011-2015). The low POD for the 
most extreme percentiles may be related 
with GFS errors, insufficient input information 
or lack of examples of these events. The 
employment of a regional model as input 
might improve the DNNs forecast.

Figure 3 - POD and FAR of DNNs 24-hour precipitation 
forecast in São Paulo (2011-2015).
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