How close are we to the temperature tipping point of the biosphere?

Katharyn Duffy¹, Vickery Arcus², Louis Schipper², Christopher Schwalm³
¹ Northern Arizona University, Flagstaff Arizona USA kdw223@nau.edu,
² University of Waikato, Hamilton New Zealand
³ Woods Hole Research Center, Woods Hole Massachusetts, USA
São Paulo School of Advanced Science on Climate Change: Scientific basis, adaptation, vulnerability and mitigation, 3-15 July 2017, São Paulo, Brazil

I. Background
All biological processes exhibit thermal optima; a temperature range within which processes accelerate most rapidly (Tmax), reach a maximum rate (Tmax), and then decline. However different biological processes may not be synchronized in their response to increasing temperatures resulting in major dis-equilibria of ecosystem processes. Particularly, the linked processes of photosynthesis and respiration each form different arcs with curvature determined by their inherent sensitivity to temperature. Constraining the difference in temperature curves between photosynthesis and respiration allows us to quantify changes to global carbon metabolism and the land sink as a whole.

To date, the biosphere has largely acted as a sink of carbon from the atmosphere and mitigates atmospheric accumulation of CO2. Here we ask the following questions:
• When temperature increases at what stage do photosynthesis and respiration responses become de-coupled?
• What is Tmax for the land-sink, and where is current mean temperature range in regard to this important threshold?
• At what temperature do we expect the biosphere to become a source of carbon to the atmosphere, and when do we expect to experience those temperatures?

II. Data & Analysis

To address these questions we used the recently released FLUXNET2015 dataset comprised of 212 eddy covariance flux tower sites which concurrently measure land-atmosphere carbon exchange along with micro-meteorological variables. We analyzed over 1500 site-years of daytime partitioned photosynthesis along with air temperature, sunlight and evaporative fraction (a metric for available water). As Tmax for respiration is known to exceed temperatures observed by FLUXNET, we expanded our respiration dataset to include temperature gradient block data⁴, and leaf-level respiration data⁵. We accounted for the effects of water and sunlight through partial correlation analysis and extracted the temperature signal of global carbon fluxes to fit MacroMolecular Rate Theory⁶ and constrain the global temperature response of the land-sink.

We then extracted future temperature projections from the WORLDCLIM dataset at the location of each FLUXNET tower site for all RCP scenarios and timesteps to project future biosphere metabolism.

IV. Results

The top panel of figure 3 demonstrates 2060-2080 annual mean temperature projections (dashed line) and annual mean temperature range (shaded bars) for RCP 2.6, 4.5 and 8.5 respectively. Annual mean temperature across all three scenarios resided close to the inflection point of global photosynthesis, while mean annual temperature range (blue bar extended just past Tmax), supporting the land-sink of carbon to the biosphere.

The bottom panel of figure 3 demonstrates 2060-2080 annual mean temperature projections (dashed line) and annual mean temperature range (shaded bars) for RCP 2.6, 4.5 and 8.5 respectively. Annual mean temperature across all three scenarios resided close to the temperature peak of the land-sink, however, increasingly large portions of annual climate exceeded Tmax. A warming of annual temperature range is likely to push many biomes past maximum photosynthesis and into periods of rapid decline, indicating a decrease in the land-sink, and a transition to a source of carbon from the biosphere to the atmosphere as respiration continues to increase.

With un-mitigated warming, by 2080 many of the world's most productive biomes are likely to spend the majority of their year at temperatures where photosynthesis is slowing (past Tmax) or rapidly declining (past Tmax (figure 4)). The increase in temperature observed by FLUXNET from 1991-2015 already places part of annual climate past the tipping point of the land-sink (figure 3, top panel). Our analysis suggests that any additional warming increases the proportion of time past Tmax potentially altering both the sign and magnitude of carbon assimilation on a global scale.

V. Citations
⁴Liang, Lih-Wei, et al. in prep.

VI. Datasource
www.fluxdata.org www.worldclim.org

Research funded by the National science foundation EAPSI program, the Royal Society of New Zealand, Waikato University and the NASA Terrestrial Ecology Program.