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[1] A method is described for the generation of multivariate stochastic climate sequences
for the Berg and Breede Water Management Areas in the Western Cape province of
South Africa. The sequences, based on joint modeling of precipitation and minimum and
maximum daily temperatures, are conditioned on annualized data, the aim being to simulate
realistic variability on annual to decadal time scales. A vector autoregressive (VAR) model
is utilized for this purpose and reproduces well those statistical attributes, including
intervariable correlation and serial autocorrelation in individual variables, most relevant for
the regional climate in this setting. The sequences incorporate nonlinear climate change
trends, inferred using an ensemble of global climate models from the Coupled Model
Intercomparison Project (CMIP5). Subannual variability is simulated using a block
resampling scheme based on the k-nearest-neighbor approach, preserving both temporal
patterns and spatial correlations. Downscaling to a network of quinary-level catchments
enables distributed runoff, streamflow, and crop simulations and the assessment and
integration of impacts. Final output takes the form of daily sequences, structured for driving
the ACRU agrohydrological model of the University of KwaZulu-Natal, South Africa.
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1. Introduction
[2] Interest in regional climate change and its potential

impacts has increasingly come to focus on decadal time
horizons, this perspective sometimes referred to as ‘‘near
term.’’ Such a time scale is often felt to be of more immedi-
ate relevance than the centennial scales that have typically
been considered in assessment reports of the Intergovern-
mental Panel on Climate Change (IPCC) [2007]. However,
decadal climate forecasting is still very much a nascent sci-
ence [Meehl et al., 2009; Mehta et al., 2011], with much
current research attempting to simply characterize the degree
to which the atmosphere-ocean system is potentially predict-
able on decadal time horizons [e.g., Boer and Lambert,
2008; Teng and Branstator, 2011]. Thus, the prospect of
well-validated regional decadal forecasts, particularly for
terrestrial regions, has not yet been achieved.

[3] A potentially useful alternative lies in the creation of
stochastic sequences: synthetic data series having suitable
decadal-scale statistical properties. Appropriately down-
scaled and including a climate change component, these
may be used to drive hydrology or other impacts models
(possibly integrated or chained together) to explore the re-

silience of planned adaptation measures to a range of plausi-
ble climate variations, or scenarios, for the next few decades.
Indeed, such assessments should continue to be useful if and
when skillful decadal forecasts become a reality, given the
uncertainty inherent in all forecasts. At least one study [Boer,
2009] suggests that, as climate warms, potential predictability
on decadal time scales may decrease. Should this turn out to
be case, the importance of scenario generation can be
expected to grow accordingly.

[4] The utilization of stochastic simulations at the
weather timescale is not new (see Wilks and Wilby [1999]
for a review); there have also been attempts to incorporate
climate change information in such sequences [e.g., Seme-
nov and Barrow, 1997; Wilks, 1999; Kilsby et al., 2007].
Application with the decadal time scale in mind, the focus of
the work described here, has also been undertaken [Prairie
et al., 2008; Kwon et al., 2007, 2009], but constitutes a less
well explored domain. A focus on the decadal scale shifts
the emphasis toward regional low-frequency variability and
its potential for augmenting (or compensating) secular,
forced climate change on decadal time horizons.

[5] The simulations discussed herein are generated on an
annual time step for the study area as a whole, then down-
scaled to individual locations and daily time resolution for
application in ACRU [Schulze, 1995], which requires daily
values for precipitation and maximum and minimum tem-
peratures. (ACRU, formerly the Agricultural Catchments
Research Unit model, has been generalized to include non-
agricultural areas and is now known simply by its acro-
nym.) Dependence among the variables requires that they
be simulated jointly; accordingly, a multivariate modeling
framework is adopted. Secular, anthropogenically forced
trends are inferred using an ensemble of global climate
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models (GCMs) from the CMIP5 project [Taylor et al.,
2012].

[6] ACRU simulates runoff but also incorporates some
crop modeling capabilities, and for impact studies its output
will be used to drive an economic model. The present work
does not extend to this model coupling but focuses on the
methodology of simulation, the first link in this chain.
Warburton et al. [2010] provide an assessment of present-
day simulations using ACRU.

[7] In section 2 an overview is provided of the physical,
hydrological and economic setting. Section 3 describes the
data utilized and section 4 the methodology. Model valida-
tion is discussed in section 5 and application in section 6.
Some trailing issues are considered in section 7, and a sum-
mary is provided in section 8.

2. The Study Area
2.1. Description

[8] Situated in the Western Cape region of South Africa,
the study area (Figure 1) comprises the Berg Water Man-
agement Area (WMA) and parts of the neighboring Breede
WMA, and covers approximately 19,000 km2. The Berg
and Breede Rivers flow northwestward and eastward, drain-
ing into the Atlantic and Indian Oceans, respectively. The
two WMAs are treated jointly because they are linked by
interbasin transfers, the region’s water resources being
managed as an integrated system. The study area is charac-
terized by steep gradients in both altitude and rainfall :
Mountainous areas along the divide between the WMAs
reach elevations of nearly 2000 m and may receive annual
mean precipitation in excess of 3000 mm, while near the
mouth of the Berg annual means fall below 200 mm.

[9] With the aid of intensive irrigated agriculture, the
Western Cape produces high-value crops such as wine and
table grapes, deciduous fruits and citrus; the region makes
a significant contribution to South Africa’s national econ-
omy. At the same time urban water demand, notably in the
city of Cape Town, has tripled since the late 1970s and con-

tinues to increase, by about 4% annually [Louw and van
Schalkwyk, 2000], and there is now direct competition for
water between urban and agricultural sectors.

2.2. Delineation of Subcatchments

[10] For operational decision making, South Africa has
been divided into quaternary catchments, these being a fourth
level subdivision of the 22 primary catchments that cover
South Africa, Lesotho and Swaziland. Schulze and Horan
[2011] have further subdivided these into quinary catch-
ments, on the basis of natural breaks in altitude. The study
area comprises 171 quinary (or 57 quaternary) catchments.

3. Data
[11] Two types of data are employed, (1) a set of local

time series associated with the quinary-level catchments
and (2) temperature and precipitation simulations from a
14-member ensemble of global climate models (GCMs)
from CMIP5. Observed regional-scale variability, on which
the annual-to-decadal component of the simulations is con-
ditioned, is estimated from the spatially averaged quinary
time series. The GCM outputs are utilized both globally, to
characterize the ‘‘forced’’ anthropogenic climate change
signal and regionally, to estimate future temperature and
precipitation responses to global warming.

3.1. Local Observations

[12] The quinary catchment data comprise 171 trivariate
daily time series, for precipitation and maximum and mini-
mum temperatures (pr, Tmax, and Tmin, respectively) and
span the years 1950–1999. The data derive from a network
of stations associated with the quaternary catchments, the
same rainfall record being used for three, or occasionally
more, neighboring quinaries [Schulze et al., 2005, 2011]. In
all, there are 44 independent precipitation records among
the quinary data. When ACRU is run, adjustment factors,
based on empirical relationships, are applied to the daily
values, resulting in the creation of unique rainfall time se-
ries for each quinary catchment.

Figure 1. The Berg and Breede Water Management Areas and the study area (shading). The inset map
shows the location within South Africa.
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[13] The daily temperature data used to represent the qui-
nary catchments were extracted from a gridded database of
daily maximum and minimum temperatures (resolution one
arc minute of latitude/longitude, corresponding to about
1.85/1.55 km) developed by Schulze and Maharaj [2004].
The mapping of quinaries to grid points [Schulze et al.,
2011] produces unique records of maximum and minimum
temperature for each catchment.

3.2. Information From GCMs

[14] The expected climate change signal, in this case the
regional response for each of the three modeled variables
to anthropogenic forcing, is estimated with the aid of an en-
semble of 14 GCMs from CMIP5 (Table 1). Both global
and regional temperature as well as regional precipitation
fields are utilized. Twentieth century values are taken from
the ‘‘historical’’ simulations, those for the 21st century
from the RCP4.5 experiment [Taylor et al., 2012], which
represents a middle ground with respect to future emis-
sions. Regional precipitation is computed as an average
over 30�–35�S, 17�–23�E, an area encompassing the West-
ern Cape and exhibiting a relatively homogeneous spatial
pattern of precipitation change in most of the GCMs.

4. Method
[15] The simulation plan assumes three ‘‘process classes’’

that contribute on different time scales, and in differing
degrees, to the variability expressed at each of the quinary
catchments. These are the forced or anthropogenic compo-
nent, a ‘‘natural’’ annual-to-decadal component and a sub-
annual component, including the seasonal cycle as well as
day-to-day variations. The first two of these are modeled at
annual time resolution, the trend inferred using the CMIP5
ensemble and the annual-to-decadal component simulated

by the VAR model. Subannual variability is generated by
preferentially resampling the observational data in 1 year
blocks. The k-NN approach utilized for this step allows for
shifts in daily rainfall statistics that may come about as a
result of climatic changes. A possible increase in interan-
nual precipitation variability with global temperature was
investigated, but was not corroborated by the CMIP5 en-
semble and is not modeled.

[16] Figure 2 shows a method schematic. In order that
the overall flow be clearly illustrated, some of the symbols
on this diagram have been assigned multiple levels of sig-
nificance: The Input node represents an individual catch-
ment record with respect to the trend path (along the top of
Figure 2), but the entire ensemble of catchment records
with respect to the resampling path (along the bottom); ele-
ments of both the analysis (e.g., leading to the VAR node)
and synthesis (the Simulate path) are shown; trend is
treated differently for precipitation and for the temperature
variables, and so on. These procedural details are clarified
in sections 4.1–4.4.

4.1. Trends, Past and Future

[17] Local trends are modeled as functions not of time
but of global mean temperature, the motivating idea being
that trend should represent a response to anthropogenic
forcing, rather than simply a shift in the mean level with
time. The global mean surface temperature, suitably com-
puted, has been shown to be an effective proxy for the
forced climate response [Ting et al., 2009]. Note that vari-
ous features of the regional climate, including atmospheric
circulation, may change as the planet warms. The global
mean temperature may be thought of as an index of this
warming.

[18] Recent work suggests that the observed global tem-
perature record may be contaminated to some degree by in-
ternal decadal variations [Ting et al., 2009; DelSole et al.,
2011]. For this reason the signal is computed here by aver-
aging over the CMIP5 ensemble. The individual GCM sim-
ulations are low-passed using a fifth-order Butterworth
filter [Smith, 2003] having half power at a frequency of
0.1 yr�1, then averaged. (Results are not sensitive to the
precise method of filtering.) Ensemble averaging has the
effect of attenuating unforced climate fluctuations, since
these are uncorrelated from model to model, while enhanc-
ing that part of the signal that the individual GCMs have in
common, namely, the response to anthropogenic forcing.
The smoothing reduces both residual interannual variability
and the effects of short-lived transients such as volcanic
eruptions. For further discussion of this procedure see
Greene et al. [2011a].

[19] When a local record is regressed on the smoothed
multimodel mean signal the fitted values, representing the
trend, take the form of a scaled, shifted version of the
regressand. Three such fits appear as the trend lines in
Figure 3, which shows the annualized regional (i.e., catch-
ment-averaged) observational series. Note that this proce-
dure implicitly removes any remaining additive bias in the
multimodel mean temperature record. Detrending is accom-
plished by subtracting the fitted values. The regression coef-
ficients are used, in conjunction with the future multimodel
mean temperature signal, for forward projection, now in
terms of the response to future anthropogenic forcing.

Table 1. GCMs in the CMIP5 Archive Utilizeda

Center Model

BCC (China) BCC-CSM1.1
CCCma (Canada) CanESM2
CNRM-CERFACS (France) CNRM-CM5
CSIRO (Australia) CSIRO-Mk3-6
INM (Russia) INM-CM4
IPSL (France) IPSL-CM5A-LR
MIROC (Japan) MIROC-ESM
MIROC (Japan) MIROC-ESM-CHEM
MIROC (Japan) MIROC5
MOHC (United Kingdom) HadGEM2-ES
MPI-M (Germany) MPI-ESM-LR
NASA GISS (United States) GISS-E2-R
NCAR (United States) CCSM4
NCC (Norway) NorESM1-M

aInstitutions are as follows: BCC, Beijing Climate Center, China Meteor-
ological Administration; CCCma, Canadian Centre for Climate Modeling
and Analysis; CNRM-CERFACS, Centre National de Recherches Météoro-
logiques/Centre Européen de Recherche et Formation Avancée en Calcul
Scientifique; CSIRO, Commonwealth Scientific and Industrial Research
Organisation and the Queensland Climate Change Centre of Excellence;
INM, Institute for Numerical Mathematics; IPSL, Institut Pierre Simon
Laplace; MIROC, Atmosphere and Ocean Research Institute (University of
Tokyo), National Institute for Environmental Studies, and Japan Agency for
Marine-Earth Science and Technology; MOHC, Met Office Hadley Centre;
MPI-M, Max Planck Institute for Meteorology; NASA GISS, NASA God-
dard Institute for Space Studies; NCAR, National Center for Atmospheric
Research; NCC, Norwegian Climate Centre.
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[20] In going from the 20th to the 21st century regional
temperature and precipitation variables, as simulated in the
CMIP5 ensemble, behave quite differently, as shown in
Figure 4. Regional temperature projects consistently on the
global mean, as evidenced by the uniform slope across cen-
turies (Figure 4a). Precipitation (Figure 4b) exhibits consid-
erably greater variability, but 20th century values (from the
‘‘historical’’ simulations) do not trend significantly, while
the 21st century regression (based on the RCP4.5 experi-
ments) is significant at p ¼ 10�4. Observed regional precip-
itation also lacks any significant trend for the period of
record, 1950–1999. (To facilitate comparison with the

observational record, the 20th century values are shown
only for this period; the ‘‘historical’’ data actually extend
through 2005, the RCP4.5 simulations beginning in 2006.)
Because of this difference in behavior, the trend component
is treated differently for the temperature and precipitation
variables.

[21] Future trends are generated at the catchment level.
For maximum and minimum temperatures, this is accom-
plished by regressing the annualized catchment records on
the smoothed multimodel mean signal, as described above,
then applying the resulting coefficients to the future multi-
model mean temperature record. This enforces a consistent
relationship between 20th and 21st century behavior, with
respect to the global mean.

[22] The temperature response differs among catchments
and between Tmax and Tmin (catchment means of
0:51 6 0:22ð1�Þ and 0:62 6 0:30, respectively). Forward
projection in this manner thus implies a rather complex set
of changes in surface temperature gradients over time, while
the more rapid increase of Tmin, compared with Tmax,
leads to a mean reduction of the diurnal temperature range
(DTR). Divergent temperature tendencies could eventually
evoke compensating behaviors, such as small-scale circula-
tion adjustments that would act to reduce local gradients.
However the reduction in DTR could represent a shift to-
ward a new equilibrium state [see, e.g., Braganza et al.,
2004].

[23] Because of this complexity, and because the simula-
tions under discussion extend just a few decades into the
future, we do not attempt to include compensating mecha-
nisms for temperature trends in the simulation model. This
could be done, for example, by relaxing catchment trends
toward a common mean, insuring that local gradients do
not become unrealistically large. However there is some
spatial dependence in temperature trends, for which an
additional level of modeling would be required.

Figure 2. Method schematic: Nodes (boxes) represent signals, and edges (lines) the processes that link
them. The dashed line from Resample indicates implicit trend-subannual coupling via the k-nearest
neighbors (k-NN) scheme. Dashed lines from Output and ACRU represent processes outside the scope
of the present study.

Figure 3. The three regional time series on which simula-
tions are based. Dashed lines are the fitted trends, from
regression on the low-passed CMIP5 multimodel mean
global temperature record.
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[24] Annualized catchment-level precipitation records
are similarly regressed on the smoothed multimodel mean,
but the resulting coefficients are utilized in a different man-
ner. To begin with, the regional 21st century precipitation
response differs among GCMs. The distribution of this
response is shown in Figure 5, along with a Gaussian fit.
Trends are computed in log space, the coefficients then rep-
resenting the fractional change in regional precipitation
(shown in Figure 5 as percentage change) per degree of
global temperature increase. The distribution has mean
�6:7% per degree warming, with a standard deviation of
6:9%. (These values refer to the 2006–2065 period in the
RCP4.5 experiment; the 2000–2005 interval, belonging to
the historical simulations, has an intermediate character and
its future precipitation trend is interpolated between 20th
and 21st century values.) Three of the 14 models become
wetter with warming temperatures, suggesting a nonnegli-
gible probability (�17% in terms of the fitted Gaussian) of

such an outcome. Note that absolute GCM precipitation val-
ues are not utilized in these computations, bypassing a
potential source of bias.

[25] In projecting the precipitation trend, a desired quan-
tile is first specified and the corresponding value calculated
using the fitted Gaussian. Catchment-level trends are then
computed as

Tc21 ¼ Tr þ �Tc20; (1)

where Tc21 is the future catchment trend, Tr the quantile-
based regional trend, Tc20 the 20th century catchment trend
and � is a factor, here set provisionally at 0.5. Thus, the
catchment-averaged future trend will correspond to the
imposed quantile-based value, while individual catchment
trends will scatter around this value according to their 20th
century behavior. (Recall that the average 20th century
catchment trend is not significantly different from zero.)
The degree of scatter, �, is at the operator’s disposal, but is
attenuated here in order that study area precipitation not
become overly ‘‘disorganized’’ as the simulations are pro-
jected into the future. Catchment-level 20th century trends
show no dependence on either altitude or location within
the study area, suggesting a significant random component
in their dispersion.

[26] From the physical perspective there is some reason
to believe that the Western Cape will dry in coming deca-
des, owing to poleward migration of the dry subtropical
belts and midlatitude storm tracks. Indeed, some of this
migration has already been observed [Seidel et al., 2008;
Yin, 2005]. The phenomenon is also suggested in Figure
11.2 of the IPCC Fourth Assessment Report [IPCC, 2007,
p. 869], which shows that the drying projected for the
Western Cape is not an isolated regional phenomenon but
part of a coherent global pattern.

4.2. Regional Annual-to-Decadal Variability

[27] The annual-to-decadal component of the simulation
model is based on January–December means of the three
variables, averaged over the study area (i.e., the series
shown in Figure 3, but after detrending). Owing to the

Figure 4. Scatterplots of (a) regional mean temperature and (b) precipitation against global mean tem-
perature, CMIP5 ensemble means. Annual mean values are shown for 1950–1999, corresponding to the
observational period of record, and from 2006, when the RCP4.5 simulations begin, through 2065; the
region is 30�–35�S, 17�–23�E.

Figure 5. Distribution of the regional precipitation response
to global mean temperature change in the CMIP5 ensemble
utilized here. Regression is carried out in log space: the ab-
scissa shows the response as the percent change per degree
of global temperature increase. The curve is a Gaussian fit to
the data.
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winter (JJA) maximum in Western Cape rainfall, time aver-
aging in this way does not bisect the rainy season. Area
averaging reduces small-scale ‘‘noise’’ that is uncorrelated
across catchments, while enhancing whatever large-scale,
quasi-regional signal the catchments share. Climate variabili-
ty on annual-to-decadal scales may be expected to arise
chiefly from large-scale oceanic or coupled ocean-atmosphere
processes [Schlesinger and Ramankutty, 1994; Trenberth and
Hurrell, 1994; Mantua et al., 1997]. Terrestrial climate varia-
tions, conditioned by such processes through atmospheric tel-
econnections, would tend to exhibit relatively large-scale
spatial signatures [Hurrell, 1996; Enfield et al., 2001; Glantz
et al., 1991].

4.2.1. Data Attributes
[28] Tyson et al. [2002] discussed a pervasive 18 year os-

cillation in southern African climate. The claimed signal,
present in both instrumental and paleorecords, was strong-
est in the 20�–30�S latitude band, but detectable to the
southern extremity of the continent. Our regional record
was tested for the presence of such a signal, using both sin-
gular spectrum analysis (SSA), a technique well suited for
detecting quasiperiodic signals in short, noisy time series
[Ghil et al., 2002], as well as wavelet analysis [Torrence
and Compo, 1998]. Neither method confirms the presence
of such an oscillation, as illustrated by the precipitation
wavelet spectrum shown in Figure 6a. (Oscillations at the
claimed frequency would fall outside the ‘‘cone of influ-
ence’’ in this plot but should nevertheless be visible if pres-
ent.) Likewise, SSA and wavelet analyses of the Tmax and
Tmin records (wavelet spectra shown in Figures 6b and 6c)
do not suggest the presence of significant oscillatory com-
ponents. There are many possible reasons for such a dis-
crepancy, including spatial or temporal inhomogeneity of
the 18 year signal and the analysis of disparate data sets.
Without disputing the claims made by Tyson et al., it is
concluded that such an oscillation is not present in the data
utilized here.

[29] Lag 1 autocorrelation coefficients for the regional
variables are significant at 0.10 and 0.05 for Tmax and
Tmin, respectively (one-sided test) but not for precipita-
tion. The Durbin-Watson test for serial autocorrelation is a
bit more confident, yielding p values of 0.06 and 0.01 for
Tmax and Tmin, respectively. Thus the ‘‘decadal’’ (i.e.,
persistent) component of the observational record appears
to reside in the temperature variables, the precipitation sig-

nal being essentially indistinguishable from white noise.
The wavelet spectra of Figure 6, despite the presence of
some episodic activity in the 10 year band, do not suggest
(via the presence of significant peaks in the global spectra)
the presence of systematic signal components, i.e., compo-
nents that differ from AR(1) in character.

[30] Owing to the well-defined water year, the modeling
of seasonal (JJA) values was considered. However the
ACRU model, because it includes the memory effects of
soil moisture, requires full years of simulated climate.
Additionally, water stresses tend to be highest during the
summer months, when rainfall is low and evaporation high,
while area physiography limits the potential for buffering
via the construction of new dams. Thus, behavior outside
the rainy season is also of significant interest. Preliminary
inspection of the JJA statistics indicates that they do not
differ greatly from those derived from annual values.

[31] A composite scatterplot (Figure 7) shows a negative
correlation (r ¼ �0:45, significant at 0.001) for pr and
Tmax, and a stronger positive correlation (r ¼ 0:73) for
Tmax and Tmin. The first of these may reflect rain-associ-
ated cloudiness and/or reduction of the Bowen ratio by sur-
face moistening. Both mechanisms involve a significant
insolation component, which may explain the lack of corre-
lation between pr and Tmin. In any event, failure to repre-
sent these relationships correctly would likely bias the
simulations, and, by extension, the resulting outputs from
ACRU.

[32] It has been hypothesized that global warming will
bring about an increase in year-to-year precipitation vari-
ability, owing to the exponential dependence on tempera-
ture of water saturation vapor pressure. Figure 8 shows the
CMIP5 ensemble distributions of interannual precipitation
variance for the 30�–35�S, 17�–23� E domain for 1950–
1999 and 2046–2065, by which time global mean tempera-
ture has increased by �1.5�C. Almost no change in the dis-
tribution of variance is observed, so there would seem to be
little justification for modeling such a dependence. The
CMIP3 simulations are in accord on this point.

4.2.2. Statistical Model
[33] The absence of significant peaks in the three re-

gional spectra (for pr, Tmax and Tmin), together with the
serial correlation exhibited by the temperature variables,
suggests the deployment of a vector autoregressive (VAR)
model, a multivariate generalization of the classical AR

Figure 6. Wavelet power spectra for the detrended regional series: (a) precipitation, (b) Tmax, and
(c) Tmin. Level boundaries correspond to the 25th, 50th, 75th, and 95th percentiles of spectral power, and
the solid black contours correspond to the 0.05 red noise significance level. The thick dashed line delineates
the ‘‘cone of influence,’’ outside of which edge effects become important. For each variable the panel at the
right shows the global wavelet spectrum (solid line) and the 0.05 red noise significance level (dashed line).
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model, for the annual-to-decadal component of the simula-
tions. VAR models have been widely utilized in both econ-
ometrics (see, e.g., Holden [1995] and other papers in that
issue) and climate studies [e.g., Penland and Sardeshmukh,
1995; Newman, 2007], where a VAR model of order unity
is known as a linear inverse model.

[34] The first-order VAR model can be written

yt ¼ Ayt�1 þ ut; (2)

where yt is the 3� 1 (pr, Tmax, Tmin) climate vector at
time t, A is a 3� 3 matrix of coefficients and ut is a 3� 1
stationary white noise process with expectation 0 and covar-
iance matrix �u ¼ EðuTuÞ. Note that u need not be white in
parameter space, i.e., there may be some contemporaneous
correlation between the variables, corresponding to nonzero
off-diagonal elements in �u.

[35] A model of the form (2) was fitted to the annualized
regional series by least squares, using the dynamical sys-
tems estimation (dse) package [Gilbert, 1995] for the R
programming language [Ihaka and Gentleman, 1996]. One-
step-ahead forecasts are shown in Figure 9, where it can be
seen that the fraction of variability accounted for by the
predictive component of the model (the first term on the
right-hand side of equation (2)) is modest. While some of
this predictability arises from autocorrelation, some may
also result from lagged cross correlations. To quantify con-
tributions from the latter the Granger causality test
[Granger, 1969] was applied. This pairwise test assesses
the predictability above and beyond that arising from serial
autocorrelation that is contributed by lagged cross-variable
dependence. Results suggest a limited degree of additional
predictability for precipitation and Tmin based on the
inclusion of Tmax and precipitation, respectively, at the
preceding time step (p values of 0.17 and 0.14, pooled
across variables).

[36] Although one could perhaps make a case for a
model lacking serial dependence, we retain the VAR struc-
ture, in part on the accumulated evidence but also because
the hydrological significance of this dependence is not
known a priori. It should therefore be instructive to com-
pare ACRU outputs with those based on simulations from a
model lacking the predictive term. Ultimately the VAR
model is also more general, and can better serve as a proto-
type for application in a diverse range of settings. Neither
Akaike’s information criterion (AIC [Akaike, 1973]) nor
the Bayesian information criterion (BIC [Raftery, 1986])
suggest that there is anything to be gained by moving
beyond the complexity of a first-order model.

4.3. Subannual Variations

[37] Subannual variability is generated by resampling
the observations in 1 year blocks, using a modified k-NN
scheme [see, e.g., Rajagopalan and Lall, 1999] in which
the three-component feature vector consists of a single
year’s simulated annual means of pr, Tmax and Tmin. The
aim is to select, from among the 50 data years, one whose
mean annual values approximate this vector. Since year-to-
year dependence is already accounted for by the VAR
model there is no role in this scheme for a ‘‘successor’’: A
particular year having been chosen from among the candi-
dates, its subannual patterns of variability are appropriated
for the year being simulated.

[38] Experimentation suggested that the use of k ¼ 5 near-
est neighbors provides a reasonable compromise between the
generation of sufficient variety in the resultant sequences and
the inclusion of too remote candidates (see section 5.2). The
Mahalanobis distance metric [Mahalanobis, 1936] is utilized,
with weights of 2

3 ;
1
6 ;

1
6

� �
assigned to pr, Tmax, and Tmin,

respectively, effectively weighting precipitation double the
combined weights of the two temperature variables. These
weights are based on past results from ACRU implicating
precipitation as the most important predictor of runoff, the
key application variable, but should be considered provi-
sional subject to further experimentation. (Alternate weights
may prove desirable for studies focusing on the summer dry
season.)

[39] A monotonically decreasing resampling kernel, with
values / 1=j; j ¼ 1; 2 . . . 5, is utilized to select from among

Figure 7. Scatterplots for the (detrended) regional series.
Units are mm d�1 for pr and degrees Celsius for Tmax and
Tmin.

Figure 8. Interannual precipitation variance for the 20th
and 21st century simulations. Distributions across the
CMIP5 ensemble are shown.
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the nearest neighbors. The resampling scheme explicitly
links the climate change and subannual time scales, in princi-
ple enabling the realization of climatically induced changes
in daily rainfall statistics, as secular trends in the mean state
induce shifts in the population from which resampled statis-
tics are drawn. The three variables are resampled jointly and
across the entire study area, preserving spatial coherence
(including potential shifts in spatial patterns driven by large-
scale mean changes), high-frequency covariation and sea-
sonal cycle shape.

4.4. Downscaling

[40] Figure 10 shows coefficient distributions for regres-
sions of the detrended catchment-level variables on the cor-
responding regional series. Because the regional signals
represent catchment means, the average coefficient for each

of the variables is unity, guaranteeing that the catchment-
averaged response will reproduce the imposed simulation
sequence. The plots give some idea of the degree to which
annualized catchment variations follow those of the re-
gional signal, or, put another way, the degree to which the
regional signal is expressed at each of the catchments.

[41] In the downscaling step, simulated annual-level var-
iations are propagated to the catchments using these coeffi-
cients. Uncorrelated noise is added to bring variances into
agreement, emulating the observed variability. The result-
ing signals are substituted for intrinsic annual-level catch-
ment variations by adjusting the resampled catchment
values, in 1 year blocks. This is done additively for the
temperature variables, multiplicatively for precipitation.
ACRU is driven by the resulting daily sequences, superim-
posed on the CMIP5-derived trends.

5. Simulation and Model Checking
[42] The fitted VAR model is initially used to generate a

single very long sequence at the annual time step
(N ¼ 500; 000). This is 10,000 times the length of the
observational record and provides many more realizations
than would be needed (or practical) for driving ACRU. The
profusion of data is useful, however, in that it provides
both precise estimates of simulation statistics and the op-
portunity to select, from a large ensemble of possible real-
izations, a small set having well-constrained properties.

5.1. Annual-Level Simulation Statistics

[43] Lag 1 autocorrelation coefficients for the detrended
regional time series and the long simulation are shown in
Table 2, where it can be seen that the coefficients for the
simulated series mimic their targets fairly closely. Differen-
ces between the observed and simulated coefficients are con-
siderably smaller than coefficient sampling variability,
which approximates 0.14 for all variables. Correlation matri-
ces for the observations and simulation are given in Table 3,

Figure 9. One-step-ahead predictions (dashed lines) for the VAR(1) model. Solid lines show the
observed regional series.

Figure 10. Distributions of the coefficient b1 for regres-
sions of the annualized catchment-level variables on the
corresponding regional time series.
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which shows that quite a close correspondence has been
achieved. As noted, these correlations may arise through ei-
ther the modeled lag 1 dependencies or the innovations term
ut (i.e., either of the terms on the right-hand side of equation
(2)). The VAR model thus captures well the two characteris-
tics of the regional series that are of importance for the sim-
ulation of annual-to-decadal variations in this setting.

5.2. Subannual Simulation Characteristics

5.2.1. Spell-Related Properties
[44] Figure 11 compares observed and simulated distri-

butions for dry and wet spell counts and wet spell amounts,
in the form of quantile-quantile plots. Comparisons are
made on the 1950–1999 period, statistics being computed
over the 44 catchments having unique precipitation records.
Simulations based on three nonoverlapping segments, ran-
domly sampled from the long simulation sequence, are
plotted. Figure 11 shows that the simulated distributions
closely approximate the observed. Plots for spell lengths
(not shown) show similarly high degrees of correspon-
dence; examination of additional sequences suggests that
these are representative.

[45] The quantiles shown in Figure 11 are computed on
spell data pooled over catchments, obscuring the degree to
which distributions may or may not correspond at the
catchment level. This question is addressed, taking a
slightly different perspective, in Figure 12, which shows
coefficients for linear regressions of log-transformed catch-
ment wet spell amounts on annual mean regional precipita-
tion. The response of subannual statistics to mean changes
is of interest because simulation values are propagated (via
k-NN and subsequent adjustment) in terms of annual
means. For the observations only one 50 year ‘‘sample’’ is
available for computing these coefficients, and serves here
as a reference. Fifty simulations were generated on the ba-
sis of (nonoverlapping) segments drawn at random from
the long simulation sequence, yielding the distributions
plotted at each of the catchments.

[46] Figure 12 shows that coefficient distributions com-
puted from the simulations bracket the observed response
at each of the catchments. Somewhat more than half (30 of
44) of the observed coefficients lie within the interquartile
ranges at the individual catchments. This number ranges
from 28 to 38 over the five spell parameters investigated,

wet and dry spell counts and lengths and wet spell mean
daily amounts, suggesting that the spread of the simulated
distributions might be somewhat too large. However, this
does not take into account uncertainty in the observed coef-
ficients themselves, so the simulated coefficient distribu-
tions may in fact not be unreasonably broad.

5.2.2. Precipitation Extremes
[47] Although the k-NN scheme selects for years with

climate characteristics that are ‘‘close’’ to those being
simulated, some adjustment of annual means of the three
variables is still required in order that they replicate the
imposed, simulated values. For precipitation this adjust-
ment takes the form of a multiplicative scaling. Given the
parameters adopted for the k-NN scheme, the resampled
annual sequences prior to this scaling account for an aver-
age of 90% of the variance in the values to be simulated
(based on the 50-sequence sample), so the required adjust-
ments are relatively small. Nevertheless it is of interest to
investigate whether the scaling might distort extreme rain-
fall distributions. To this end, the dependence of 3 day
block maxima (i.e., highest 3 day rainfall total in each
year) on annual mean regional precipitation was examined.
As in the analysis of spell-related properties only the 44
unique precipitation records were considered.

[48] Regressions were conducted on both the actual and
log-transformed data, yielding coefficients that reflect abso-
lute and fractional change in 3 day precipitation totals,
given absolute and fractional changes in annual mean pre-
cipitation, respectively. In absolute terms, 3 day totals were
found to increase 40 6 21 mm (1� ) per unit annual mean
increase (expressed as mm d�1) for the observations and
41 6 23 mm for the simulations, the distributions taken
over catchments. In fractional terms the corresponding val-
ues are 0.90 6 0.27 for the observations, 0.97 6 0.38 for
the simulations. The observed and simulated coefficients
for individual catchments are well correlated (r ¼ 0:86,
mean over the 50 simulations), indicating that differential
catchment sensitivity in block precipitation maxima is well
replicated in the simulations.

[49] Simulated and observed responses are effectively
indistinguishable (in the aggregate), and in fractional terms
are indistinguishable from unity, suggesting that, at least in
this setting, precipitation extremes do scale linearly with
the mean. This proportional behavior supports the use of
multiplicative precipitation adjustments in the downscaling
step.

[50] As long as projected annual means for the three var-
iables lie within or near their 20th century ranges, the
adjustment of subannual variations will constitute a sec-
ond-order correction, following the resampling step. Given
the high interannual variability of precipitation, the most
important of the three variables, compared with projected
mean changes, this condition is likely to be met in many
cases, in particular for wet extremes in the expected drying
climate of the Western Cape.

6. Toward Application
6.1. Specification and Screening

[51] The length of the simulated sequence allows for
screening on multiple criteria, thus the exploration of

Table 2. Lag 1 Autocorrelation Coefficients for pr, Tmax, and
Tmin for the Regional Observations and Long Simulation

Source pr Tmax Tmin

Observations 0.003 0.166 0.293
Simulation �0.010 0.175 0.299

Table 3. Contemporaneous Correlations for the Regional Obser-
vations and Long Simulation

Observations Simulation

pr Tmax Tmin pr Tmax Tmin

pr 1.000 1.000
Tmax �0.449 1.000 �0.445 1.000
Tmin �0.066 0.732 1.000 0.068 0.733 1.000
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potential impacts in an efficient manner. Figure 13 shows
annual values for two simulations, both for the same qui-
nary catchment, which lies at an elevation of 870 m and
has mean annual precipitation for 1950–1999 of 2.0 mm
d�1. For both simulations the 50th percentile, correspond-
ing to a 6.7% precipitation decrease per degree global tem-
perature increase, was specified for the regional 21st
century response. The 20th century trend at this catchment,
inferred from the observations, is small but negative, a
reduction of 1.2% per degree warming. When combined
according to (1) the net response is a reduction of 7.3% per
degree global temperature increase, or –0.19 mm d�1 by
the middle of the 2041–2050 decade, given a warming by
that time of 1.3�C. The choice of decade in these examples
is arbitrary, but for illustrative purposes it was desired that
the precipitation reduction be significant.

[52] Simulated values in Figure 13 begin in year 2000.
To select the particular sequences shown, the long simula-
tion was screened on four criteria : First, it was desired to
obtain some sense of the relative contributions of trend
and decadal variability over the near term. As it turns out,

decadal anomalies lying at the 5th and 95th percentiles cor-
respond to deviations of 60.18 mm d�1, nearly matching
the secular drying at this catchment during the target decade.
Catchment precipitation follows the regional signal closely,
with a regression coefficient of 0.94 (see Figure 10), so there
is very little dilution of the simulated signal in the downscal-
ing step. The initial screening specification is thus that
10 year mean precipitation be constrained to lie near the 5th
(or 95th) percentile.

[53] Figure 7 tells us that pr and Tmax are anticorre-
lated: Years when these variables are both anomalously
high (or low) are relatively unlikely. Since we are inter-
ested here in the ‘‘typical’’ impacts of precipitation fluctua-
tions, it was further required that the temperature variables
lie within reasonable ranges of their conditional expected
values, given the specified precipitation departure. Finally,
because there is some hydrologic memory of past condi-
tions, anomalous precipitation during the preceding decade
was required to be reasonably small. Screening for the
specified values 60.1, 60.6, 60.6, and 61.0 standard
deviations, for decadal precipitation, Tmax, Tmin, and the

Figure 11. Quantile-quantile plots for (a) dry and (b) wet spell counts and (c) wet spell mean amounts
(mm d�1) for three randomly selected simulations compared with observations over the 44 unique catch-
ment records. Wet (dry) spells must be at least 3 (5) days in length, and rainfall during wet spells must
be at least 10 mm on each day. Markers are plotted at each 0.01 quantile from 0.01 to 0.99, and in
Figures 11a and 11b they have been shifted by small random amounts (‘‘jittered’’) for readability.

Figure 12. Catchment-level coefficients for log wet spell mean amounts regressed on annual mean pre-
cipitation. Distributions are taken over 50 simulations. Black markers show observed values.
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preceding decade’s precipitation, respectively, yielded sev-
eral hundred simulation candidates, from which the exam-
ples shown were selected. Finally, the long sequence was
sliced so the that specified decadal fluctuations occur dur-
ing the 2041–2050 decade.

[54] For application purposes it may be useful to calcu-
late the quantile corresponding to a particular decadal pre-
cipitation value, resulting from the joint specification of
trend and fluctuation percentiles. Knowing the distributions
of both trend and fluctuation, the desired value can be com-
puted by first expressing the trend as a precipitation anom-
aly, as we have done above. The sum of trend in this form
with the decadal fluctuation can then be evaluated in terms
of the sum of their distributions.

6.2. Balance of Trend and Variability

[55] In the scenario just described, the 5th-percentile
decadal fluctuation produces a near doubling of the precipi-
tation reduction owing to trend (Figure 13a), while the
95th-percentile anomaly (Figure 13b) results in an almost
complete cancellation. Because the trend is computed in
fractional terms while fluctuations take the form of anoma-
lous precipitation rates, this balance will differ across
catchments. Mean precipitation at the example catchment
is close to the regional value (see Figure 3), so the balance
there can be expected to approximate that of the study area
as a whole. Catchment-level factors that may modify this
balance, aside from mean precipitation, include variations
in 20th century trend and the degree to which the catch-
ment subscribes to the regional signal.

[56] From the regional viewpoint and assuming the GCM
mean precipitation response, Figure 14 indicates that by
about 2040 mean annual precipitation would be expected to
decline to the level of the present-day 5th percentile for dec-
adal means, i.e., the level demarcating the driest five percent
of decades in the present climate. The reduction comes
about in the context of significant interannual variability,

such that this level is reached fairly frequently, even at
present, in individual years, about one in three. The GCM
mean response amounts to a reduction in annual mean pre-
cipitation of about 10% by midcentury, given the RCP4.5
global temperature increase (�1.5�C) projected by this
time. A shift of this magnitude would be expected to have
significant impacts. However a more comprehensive model-
ing framework is required in order to fully understand the
implications of trend, variability and their interplay in the
complex physical and socioeconomic setting of the Western
Cape. ACRU represents the next step in this process.

Figure 13. Two simulations for the same quinary catchment and with the same precipitation trend but
opposing decadal fluctuations. Decadal anomalies were specified for the 2041–2050 period, indicated by
red bars. Observed, rather than simulated, values are shown for 1950–1999.

Figure 14. GCM mean precipitation response in the con-
text of regional variability. Blue solid and dashed lines
indicate the 20th century regional mean and 5th percentile
for decadal means, respectively. Red lines show the mean
CMIP5 response applied to these values, given the pro-
jected RCP4.5 temperature increase. Shorter and longer
black bars at the right show 61� for 10 year and annual
means, respectively.
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6.3. Application in ACRU

[57] A set of screened sequences, including both high and
low trend and decadal fluctuation quantiles, will be used to
drive ACRU, enabling the exploration of a range of plausi-
ble impacts whose likelihoods can now be quantified. In
addition to water availability, ACRU represents crop-related
responses such as evapotranspiration, irrigation demand and
yields. Its simulations will be combined with economic
modeling to produce impact assessments for agricultural
and urban sectors as well as comparative evaluations of ad-
aptation options, including demand management, infrastruc-
ture development and water trading. The results of these
experiments will be reported in a separate publication.

7. Some Trailing Considerations
[58] Supplementing the observational record with tree

ring or other paleodata could in principle permit more ro-
bust estimation of climatic behavior on the annual-to-deca-
dal scale. The regionally relevant tree ring chronology that
was examined by Tyson et al. [2002] apparently exhibits a
rather complex dependence on climatic factors [Dunwiddie
and LaMarche, 1980] rendering it difficult to interpret, and
we are unaware of other, possibly less ambiguous proxy
records in or near the study area. We have therefore not
attempted to incorporate such data in the present analysis.

[59] The trend in our simulation example represents the av-
erage CMIP5 response (with a small addition from the intrin-
sic catchment trend). The distribution of these responses was
discussed in section 4.1. Gleckler et al. [2008] show that over
a wide range of both surface and atmospheric fields, the multi-
model ensemble mean consistently outperforms individual
models, so perhaps more confidence can be placed in the
mean response, and less in the outlying GCMs, than the distri-
bution of Figure 5 suggests. On the other hand, the 14-GCM
ensemble utilized here may not sample the full range of possi-
ble regional variations, so the true distribution could in fact be
broader than that suggested by Figure 5. Detailed process
studies may aid in the evaluation of GCM behavior, eventu-
ally permitting a differential assignment of credibility among
models and, consequently, more precise uncertainty estimates.

[60] A range of sophisticated downscaling schemes exist
[e.g., Mehrotra and Sharma, 2010; Greene et al., 2011b],
and one may ask whether such a scheme might be substi-
tuted for the k-NN/rescaling deployed herein. On the one
hand, our use of a relatively straightforward method pre-
serves an emphasis on the manner of combining information
across time scales that we believe constitutes the principal
point of interest of this study. More fundamentally, how-
ever, the procedure used here arises naturally in conjunction
with the other components of the method: Since regional
variability down to the annual scale is prescribed by the
VAR model, use of a scheme that generates such variability
by other means (perhaps using GCM output) would result in
overspecification. Thus the integration of any alternate
methodology would require careful consideration, and the
range of applicable methodologies may be limited.

8. Summary
[61] A method, based on the decomposition of variability

into trend, annual-to-decadal, and subannual components,

is utilized to generate stochastic climate simulations for the
Berg and Breede Water Management Areas, Western Cape
province, South Africa. Simulations are produced on a
daily time step and are structured for driving the ACRU
agrohydrology model. Long-range trends are inferred using
an ensemble of 14 of the CMIP5 GCMs, respecting the
considerable spread they exhibit in regional precipitation
response. Variability on annual-to-decadal time scales is
simulated using a first-order vector autoregressive (VAR)
model fit to annualized observed values of precipitation and
minimum and maximum daily temperatures, while subannual
variations are generated via a modified k-NN resampling
algorithm. The simulated sequences preserve both spatial co-
herence and the temporal characteristics important for the an-
nual-to-decadal time scale, and link subannual statistics,
including spell-related behavior and precipitation extremes
(evaluated here using 3 day block maxima), to climatic
trends in a manner consistent with observed variability. The
VAR model is used to generate a single long simulation
sequence at the annual time step, from which short segments
may be extracted by screening against multiple criteria. Fol-
low-on modeling using ACRU will explore a range of sce-
narios, for which the long simulation provides an ample
‘‘library.’’

[62] Because the simulated components of variability are
superimposed on secular trends that may carry the system
to states beyond the range of those visited in the past, cli-
matic stresses may be produced, on a range of time scales,
that exceed those previously experienced. It is hoped and
expected that these simulations, utilized as inputs to
ACRU, will ultimately prove useful in delineating the cli-
mate risks with which the Western Cape may have to con-
tend in coming decades.
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