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Abstract

This paper studies government funding for scientiÞc research. Funds

must be distributed among di erent research institutions and allocated

between basic and applied research. Informational constraints prevent

less productive institutions to be given any government funding. In order

to internalise the beneÞcial e ects of research, the government requires

the most productive institutions to carry out more applied research than

they would like. Funding for basic research is used by the government to

induce more productive institutions to carry out more applied research

then they would like.
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1 Introduction

A very large amount of taxpayers’ money is spent on scientiÞc research. In

2008 in the OECD countries, government expenditure on R&D amounted to

around 0.8% of GDP (OECD 2009). These funds are channelled in many di er-

ent ways, from dedicated research centres, to universities and similar public or

private education providers, to subsidies to private non-proÞt or proÞt making

organisations. Also varied is the link between the funds provided and their

destination: some funding is linked to speciÞc research projects, some is sim-

ply awarded to institutions to spend as they see Þt, some is distributed in

consideration of past achievement.

This variety raises immediate e ciency questions. How should the total

funding be allocated across di erent institutions? Is the multiplicity of manners

in which these sums of money are assigned a good thing? Would it be possible

to re-allocate funding from one spending method to another and improve its

impact on society? Should the funding agency be concerned with the nature,

basic or applied, of the research carried out by the institutions which it funds?

This paper provides a theoretical framework to address these questions: the

aim here is to provide a theory of the optimal public research spending.

The approach is microeconomic: I leave the macroeconomic aspect of total

spending in the background, and concentrate instead on the two interrelated

questions of the balance between basic and applied research and of the distri-

bution of funding among di erent research institutions. I make the plausible

assumption that research institutions di er in their characteristics. Di erences

among institutions create a non-trivial optimisation problem: the government

wishes to allocate resources to the institutions where they are most productive,

and at the same time to ensure the “right” balance between basic and applied

research. As my analysis shows, these two requirements interact with each

other: the government uses basic research funding — more precisely, funding

that the recipient institutions will choose to devote to basic research —, as a

reward to induce more productive institutions to do more applied research. If,

plausibly, the government’s and the institutions’ objectives are not perfectly

aligned, this generates a distortion from an e cient allocation, that is an al-

location where the social marginal beneÞt is the same for basic and applied
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research and the same for all institutions. A further distortion is the concen-

tration of research towards the most e ective institutions. Relatively ine cient

institutions do not receive any funding even though small scale projects would

be cheaper to carry out than in larger funded institutions.

The relative role of applied and basic research, at the centre of my study,

requires their speciÞc characteristics to be carefully identiÞed and modelled

accurately. The distinguishing feature I posit in this paper is that it is harder

to observe whether basic research has been been carried out than it is for ap-

plied research. This relates closely to the deÞnitions o ered in the literature.

Typically, basic research, also labelled fundamental, pure, curiosity-driven, up-

stream, unpredictable (see Strandburg 2005), is seen as driven by scientists’ cu-

riosity, its aim to acquire knowledge for knowledge’s sake, in contrast to applied

research, designed to solve practical problems.1 In many cases a hierarchical

link is posited between basic and applied research: the former precedes and

provides the foundation to the latter (for example, Evenson and Kislev 1976,

or more recently Aghion et al. 2008). Since my model is static, the hierarchi-

cal link I posit is not temporal, but in the nature of the connection between

research and its e ect: applied research has a direct impact on the nation’s

income, whereas basic research has a direct impact only on the cost of carrying

out applied research: applied research becomes “easier”, cheaper, more likely

to succeed, and so on, when the body of basic research available to society is

bigger. Related to this is the di erence in the “directness” of the link between

research e ort and the realisation of the beneÞcial e ects of this e ort. Sim-

plifying somewhat, all research is uncertain, but, while in the case of applied

research the uncertainty regards whether or not a certain line of research will

be successful, that is whether or not a given, known problem is “solved”, in

the case of basic research it is also unknown in advance where a positive e ect

will emerge, if it does.2 I capture this unpredictability with the assumption

1See, for example, the deÞnition used by the US National Science Foundation to classify

expenditure: “basic research is deÞned as systematic study directed toward fuller knowledge

or understanding of the fundamental aspects of phenomena and of observable facts without

speciÞc applications towards processes or products in mind.” Conversely, “applied research

is deÞned as systematic study to gain knowledge or understanding necessary to determine

the means by which a recognized and speciÞc need may be met.” (NSB 2008, p 7).
2Nelson (1959 pp 301—2) gives several examples of basic research projects pursued as
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of a completely di use link between pure and applied research: each applied

research project is helped equally by the total amount of basic research under-

taken in society. Basic research thus bestows an externality. This, however,

does not create the appropriability problems which beset R&D activities car-

ried out in proÞt maximising Þrms, well-understood by the literature since at

least Arrow (1962). This is both because all e ects of research are internal to

the government, which funds research,3 and because individuals and institu-

tions doing research are not concerned with its monetary appropriability: their

reward is the production of knowledge, not its Þnancial exploitation, as has

long been recognised (see Stephan 1996 for a comprehensive review).

The optimal funding structure for the centralised funding mechanism de-

rived in Section 3 illustrates how information constraints force the government

to use basic research as a reward to the more productive institutions to induce

them to perform more applied research. This is ine cient, both because the

marginal rate of return of funds is di erent across institutions, and because, for

some institutions, the marginal social return is di erent for funds they allocate

to basic and applied research. Moreover, institutions which could do research

cheaply on a small scale are not funded at all.

The paper next shows how the optimal funding can be implemented in

practice. I show that the dual funding system suggests itself naturally: all

an end in themselves, which unexpectedly assists the solution of an apparently completely

unrelated applied research problem. Among the more recent ones, Moody (1995) describes

in detail the numerous strands of basic research which allowed the creation of the ubiquitous

CD. A central plank of the theory of relativity, that light is bent by gravity, is also a building

block of GPS navigation system (Haustein 2009). The abstract mathematical problem of

covering a surface with symmetric tiles lies at the foundation of our understanding and

exploitation of superconductors (Edelson 1992). Gauss’s investigation into the distribution

of prime number has led, with the contributions of many mathematical minds over the

course of two centuries, to the possibility of unbreakable cryptographic codes, without which

e-commerce would not be possible (du Satoy 2003). Table 3 in Gersbach et al (2009) has a

longer and more systematic list. An empirical investigation of the link between basic research

conducted in universities and commercial applications of the applied research it generated is

in Jensen and Thursby (2001).
3Of course in an international context, some of the beneÞts determined by the expenditure

of one country’s taxpayers’ money do accrue to individuals in di erent countries. This can

be captured by an increase in the shadow cost of public funds relative to the value it would

take in a closed economy.
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institutions receive an identical “block grant”, subject to a threshold level of

applied research. More e cient institutions, those which can do this minimum

amount of applied research spending less than the “block grant” can therefore

use their savings to engage in basic research. When the social value of applied

research is su ciently high, additional funding is made available to institutions.

To receive it, an institution must carry out additional applied research, and,

crucially, the additional funding is lower than the cost of the additional applied

research to be carried out: institutions need to “co-fund” any further applied

research they wish to carry out. This is in contrast to the “cost-plus” approach

favoured by funding agencies in the UK, and its intuitive explanation is that,

since the government wants to push institutions to do applied research rather

than basic research, even when the institution’s cost of applied research is

higher that the cost of doing basic research, it o ers to fund the former, thus

reducing an institution’s cost.

The paper is organised as follows. Section 2 presents the model, and Section

3 the results. Section 4 shows how the policy can be implemented in practice,

and Section 5 concludes. Mathematical proofs are in the Appendix.

2 The model

I model the publicly funded research sector of an economy. There is a contin-

uum of institutions with the potential to do research their number normalised

without loss of generality to 1. A government agency has the task of fund-

ing their activities. Institutions di er in their ability to spend public research

funding productively. This ability is measured by a parameter
£
,
¤̄

R.

The value of for each institution is exogenously given. The distribution of

in the sector is described by a di erentiable function F ( ), with density

f ( ) = F 0 ( ) > 0, for
¡
,
¢̄
, and monotonic hazard rate, d

d

³
F ( )
f( )

´
> 0.

The most natural interpretation for is the skill of an institution’s scientists,4

4In the simplest model, each institution is randomly assigned its sta . In reality, of course,

institutions compete for sta , which would make endogenous. In a fully developed model

of the academic labour market, one would need to take into account the fact that researchers

prefer to join high quality institutions, and so competition among institutions might not

be based exclusively on salaries. Palomino and Sákovics (2004) is a model which combines
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but it can also encompass the institution’s ability to supplement government

funding with funds from private sources. These may include for example in-

come from endowments, or, for universities, generated from students’ tuition

fees, even though I do not model explicitly any technological complementarity

or Þnancial cross-subsidisation between teaching and research (see for example

De Fraja and Valbonesi 2008). Another example is of course the possible com-

mercial exploitation of research. Two institutions which di er in this respect,

for example because of their contacts with industry, of the e ectiveness of their

technology transfer o ce (or marketing department), will be characterised by

di erent values of .

2.1 Basic and applied research.

If funded, an institution can carry out two kinds of research, basic and ap-

plied. I assume that applied research a ects directly national income, whereas

basic research a ects it only indirectly via its e ect on the productivity of ap-

plied research. Both applied and basic exert their inßuence via their aggregate

amount, deÞned here as follows. Let a ( ) and b ( ) denote the average amount

of applied and basic research, respectively, carried out in the institutions with

productivity . I deÞne by A and B the total5 amount of applied research

carried out in society. Therefore we have:

A =

Z ¯

a ( ) f ( ) d , (1)

B =

Z ¯

b ( ) f ( ) d . (2)

We can interpret A exactly as a standard Solow residual, and, taking other

inputs as given, deÞne national income as

Y (A) , (3)

with Y 0 (A) > 0, Y 00 (A) 6 0. The link between a speciÞc applied research

project and the consequent increase in national income is left implicit. As an

competition among institutions (sports leagues in their paper), with externalities among its

members (the individual teams).
5Notice that aggregate uncertainty disappears: even though speciÞc research projects may

be uncertain, then (1) and (2) denote the expected and actual amount of successful research.
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example, consider a project consisting in the development of a new therapy.

It might be that the institution carrying out the project is a private proÞt-

making pharmaceutical company receiving a government subsidy to research,

or a research centre or a university selling a patent through a TTO.6 In these

cases a direct impact of research on national output can be established. Alter-

natively, if the line of applied research is not fully appropriable and the beneÞt

is more di use, consumers or other Þrms might beneÞt directly, through new

products or lower costs and prices. An example could be an improvement in

communication technology, which beneÞt all users.

I follow Gersbach et al (2010), who posit that aggregate amount of basic

research undertaken in society is a parameter of the function which gives the

probability of a successful innovation in each of the continuum of industries

where research is undertaken. Formally, in my model, a type research insti-

tution’s cost of carrying out the amount a of applied research and the amount

b of basic research is

ĉ (a, b, , B) . (4)

I simplify the above with the assumption that applied and basic research

enter the cost function in an additively separable manner. That is, ĉab (·) = 0 in

the entire domain of ĉ. This reßects the unpredictability of the beneÞcial e ects

of basic research, which makes completely di use the externality from basic to

applied research: each institution beneÞts equally from basic research carried

out anywhere, and there is no complementarity between basic and applied

research within an institution. I also assume that there are constant returns to

scale in basic research, ĉbb (·) = 0 in the domain of ĉ. The idea is that the cost

of a basic research project, in relation to its probability to succed, is di cult

to assess, making it hard for institutions to “rank” projects according to their

“value for money”. In view of these, the cost function simpliÞes to

ĉ (a, b, , B) = c (a, ,B) + bcb ( , B) ,

for some functions c and cb.

6The analysis of the role and e ects of Technology Transfers O ces, outside the scope of

this paper, can be found for example, in Macho-Stadler et al (2007) and in the references

reported there.
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Assumption 1 For every a,B > 0, for every
£
,
¤̄
, the functions c (a, ,B)

and cb ( , B) satisfy:

1. ca (·) > 0, c (·) > 0, cB (·) < 0, c (0, , B) = 0.

2. caa (·) > 0, cBB (·) > 0, ca (·) > 0, cBa (·) 6 0.

3. cB (a, , 0) > 1 for every a > 0, for every
£
,
¤̄
.

4. cb ( , B) = 1.

Assumption 1.1 simply deÞnes as a measure of cost, captures the exter-

nality created by B, and rules out Þxed costs. The second set of hypotheses are

natural decreasing returns to scale assumptions (caa (·) > 0 and cBB (·) > 0),

and that a lower and more basic research decrease the marginal cost, as well

as the total cost. Assumption 1.3 avoids unrewarding corner solutions by en-

suring that if there is no basic research in society then a very small amount

reduces the cost of research by more than it costs.

The last part of Assumption 1 states that the cost of doing basic research

is independent of the productivity parameter, and then normalises it to 1, re-

deÞning if necessary the amount of basic research B. This assumption implies

that all institutions are equally good at doing basic research, and, while it

might be argued that this reßects the nature of basic research,7 it does not

seem to tally with stylised facts. In fact, I introduce it not for realism, but to

separate incentive from e ciency considerations in the allocation of funding for

basic research. I show below in Proposition 3 that, in conditions of imperfect

information, low institutions, which are more e cient in carrying out applied

research, do more basic research. This is not the case with symmetric informa-

tion. In view of Assumption 1.4 it is clear that this is not because they are also

better at basic research, but due to a di erent mechanism: the fact that the

funding agency’s information disadvantage forces it to o er funding that insti-

tutions can use to pay for basic research in order to induce those institutions

that are e cient at applied research to do more of it than they would like.

7Carried out by isolated group of researchers whose output is independent of their institu-

tional a liation, like archetypical Gregor Mendels experimenting on pea plants in an abbey

in Brno.
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2.2 Payo functions

I assume that a research institution’s objective is the maximisation of the total

amount of research it carries out, r, subject to any constraints it must satisfy:

r ( ) = a ( ) + b ( ) . (5)

The additive form in (5) simply implies that the marginal rate of substi-

tution between applied and basic research is constant. Any preference that

institutions might have is normalised away, and the substantive part of the (5)

is that institutional preferences between basic and applied research vary neither

with their type , nor with the amount of basic and applied research they do.

The government chooses its research funding policy: the amount of funding

to basic and applied research, and the way to distribute this funding across

the various institutions. Formally, a research policy is a pair of functions,

{t ( ) , a ( )} [ , ]̄, where t ( ) is the total funding given to institutions of type

and a ( ) is the amount of applied research they need to do in order to

receive that funding. Equivalently, since the amount of basic research in a

type institution is simply the di erence t ( ) c (a ( ) , , B), a policy can

be written as {b ( ) , a ( )} [ , ]̄, the amount of basic and applied research in

a type institution, or also as {r ( ) , a ( )} [ , ]̄, the amount of total and

applied research in a type institution. The government’s objective function

is the total national income, reduced by the cost of funding the research sector,

which includes a distortionary component, plus the non-monetary beneÞt of

research (prestige, etc.). Formally, the government’s payo function is

k (A+B) + Y (A) (1 + )T . (6)

where k > 0 is the weight of the non-monetary beneÞt of research, > 0

the shadow cost of public funds, and T =
R ¯
t ( ) f ( ) d the total funding to

research. In view of (5), (2) can be replaced by:

B =

Z ¯

[r ( ) a ( )] f ( ) d . (7)

The following assumption ensures that research is su ciently important.

Assumption 2 For every A > 0, Y
0(A)+k
1+

> 1.

That is, the marginal social beneÞt of applied research exceeds the marginal

cost of basic research.
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3 Results

3.1 Preliminaries

The viewpoint of this paper is normative: the government needs to choose how

to distribute the research budget across institutions and to direct institutions’

choice of the balance between applied and basic research. The government’s

maximisation problem is of course subject to information constraints, which

are discussed in detail below. Before I present the results, it is convenient to

deÞne the amount of applied research which equates the marginal return on

applied and basic research.

DeÞnition 1 a ( ;B) is value of a which solves

ca (a, ,B) = 1. (8)

That is, a ( ;B) is the amount of applied research which maximises type

institution’s total research when the aggregate amount of basic research is B,

provided the budget available to the institution is large enough not to constrain

applied research; this can be deÞned as the individually e cient expenditure on

applied research. Note that a (·) = ca (·)
caa(·)

< 0 and a (·)
B

= caB(·)
caa(·)

> 0. That

is, more e cient institutions have a higher individually e cient expenditure

on applied research, and an increase in the level of basic research increases the

individually e cient expenditure on applied research for all universities. This

seems natural and has been dubbed “crowding in” of basic research (Malla and

Gray 2005, p 434).

3.2 Perfect information

The Þrst proposition gives the benchmark case in which the government fully

and freely observe the productivity and the research activities of each institu-
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tion. Let a1 ( ), A1 and B1 be deÞned by:

ca (a1 ( ) , , B1) =
Y 0 (A1) + k

1 +
, (9)

A1 =

Z ¯

a1 ( ) f ( ) d , (10)

k

1 +
=

Z ¯

cB (a1 ( ) , , B1) f ( ) d + 1. (11)

By Assumption 2, Y
0(A1)+k
1+

> 1, and so a1 ( ) > a ( ;B).

Proposition 1 If the government could observe perfectly the productivity of

each institution and the amount of applied and basic research each institution

carries out, it would choose: a1 ( ), and any function r ( ) > a1 ( ) such that
R ¯
r ( ) f ( ) d = A1 +B1.

The proofs of all results are relegated to the Appendix. Notice that, since

cB (a1 ( ) , , 0) > 1 > 1 k
1+

, by virtue of Assumption 1.3, and cBB (·) in

Assumption 1.2, then B1 determined in (11) is strictly positive.

Proposition 1 is straightforward: the government simply asks each institu-

tion to carry out a certain amount of applied research. Since Y 0(A1)+k
1+

> 1, by

Assumption 2, this is more than a ( ;B), what each institution would choose

if it were simply given a budget to spend as it pleases. This is what one would

expect: applied research is more beneÞcial to the government than to institu-

tions, and so the government want institutions to do more than they would like.

By (9), the marginal cost of doing applied research is the same in every insti-

tution. This is e cient; if it were not the case, the government could transfer

research from one institution to another and reduce the overall cost of a given

total amount of applied research.

Notice that more e cient universities do more applied research: a01 ( ) =
ca (·)
caa(·)

< 0. They are better at it, so this is natural. Equally natural is the

fact that the distribution of basic research across universities is a matter of

indi erence.8 Since all institutions are equally productive at basic research,

8Without Assumption 1.4, a ( ;B) would be deÞned not by (8), but by the solution in

a to ca (a, , B) = c
b ( , B); in this case the government would allocate basic research to the

lowest cost institutions only, or, assuming also decreasing returns to scale in basic research,

10



the government determines the total amount of basic research in (11) and then

distributes it in any feasible way, that is in any way such that b ( ) > 0 for

every
£
,
¤̄
. Lastly, note that an increase in k and a reduction in increase

a1 ( ) for every
£
,
¤̄
, thus increasing A1 and B1.

3.3 Information asymmetry.

I now consider a more realistic information structure. SpeciÞcally, I assume

that the government can observe neither , an institution’s productivity, nor b,

the amount of basic research it does. Instead, the government can observe, and

an external adjudicator can verify, whether an agreed level of applied research

e ort a has been performed.

This schematic assumption captures essential features of the two types of

research e ort discussed above. The funding agency, like any observer external

to the institution, is able to verify whether or not resources destined to applied

research have in fact been spent on applied research: evidence of expenditure on

laboratories, data collection, research assistants’ time and so on can be audited,

even when, due to the uncertain nature of the research process, no tangible

result is obtained. The same, however, is less true of basic research: if a funding

body were to request an institution to destine a certain amount of resources

to basic rather than applied research, against the institution’s preferences, it

would Þnd it di cult to verify whether that request has been complied with:

a requirement imposed on an institution to, say, hire a theoretical researcher

can be easily circumvented. Similarly, requiring a researcher to do blue sky

thinking must entail that she is given the freedom to choose any project that

stimulates her curiosity: including, necessarily, applied projects, even though

they are not speciÞcally funded. In other words, it is easier to devote to applied

research resources intended by the funding agency for basic research, than the

other way round.

A related di culty would emerge if a government tried to induce its pre-

ferred combination of applied and basic research by rewarding past achieve-

ment. It is much more di cult to do so for basic than for applied research.

in such a way to equalise the marginal cost of basic research. The other qualitative features

of the analysis would not change.
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Consider the latter. One can think that an institution carrying out a large

portfolio of applied research projects, only some of which will succeed. The

aggregate uncertainty in the portfolio cancels out, and the ex-ante expected

output of the portfolio is approximately equal to the actual output, which,

considering that applied research projects have a shorter time horizon, be-

comes observable relatively soon: if the government’s funding agency rewards

the institution for its output it is e ectively rewarding e ort and quality. The

very nature of basic research is such that this is not true in its case. Some em-

pirical evidence suggests that basic research expenditure is a more important

productivity determinant than applied research (e.g., MansÞeld (1980); Link

(1981); Griliches 1986), and yet, the very long time gap and the often extremely

tenuous link between research results and their impact (see the examples given

in footnote 2) make it simply impossible to reward the observed success of ba-

sic research e ort in a way that reßect its contribution to society. To sum up,

research e ort is more observable for applied research.9 The formal implication

for the model is that the government policy can impose a ßoor but not a ceiling

on the amount of applied research: it can condition the amount of funding on

observing at least a speciÞed minimum amount of applied research; but the

institution can “hide” its applied research if it does more than the speciÞed

minimum.10

The next result illustrates that, per se, this kind of unobservability does not

limit the policy of the government.

Corollary 1 If the government can only observe whether at least a certain

amount of applied research has been carried out, but can observe perfectly the

type of the institution, then it would choose a1 ( ) and any function b ( ) > 0

9Note that peer review based formal evaluation mechanisms such as the Research Assess-

ment Exercise in the UK are intended to assess the research e ort of institutions, both in

applied and in basic research. The current version of the exercise also attempts to measure

the impact of research on society.
10As a speciÞc example, consider the use of the budget of a social scientist (including her

salary): suppose I want her to devote half of it to applied and half to basic research. I can

ask her to spend some time collecting and organising, data, and knowing the technology she

uses, I can determine that (at least) half her budget was indeed devoted to the task. But

this is not so with the rest of her time: was she trying out di erent things with her data? or

speculating on some abstract problems?
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such that
R ¯
b ( ) f ( ) d = B1.

That is, the optimal policy when the government is unable to observe basic

research is exactly as in Proposition 1, when it can observe the nature of the

research carried out. The reason is straightforward: the government wants each

institution to carry out the appropriate amount of applied research, and o ers

individualised contracts to each institution with this requirement. Since these

contracts require a minimum amount of applied research higher than what

the institution would do on its own (a1 ( ) > a ( ;B)), they are incentive

compatible. Basic research, the cost of which is independent of the institution

where it is carried out, is distributed in any feasible way.

This policy, however, cannot be implemented if the government cannot ob-

serve each institution’s productivity parameter, . The reason is that Proposi-

tion 1 and Corollary 1 require each institution to choose a combination of basic

and applied research e ort such that applied research has a higher marginal

cost than basic research, and so, if institutions were simply asked to do a1 ( )

and b ( ), they would have an incentive to claim to have a higher than they

have. By doing so, they would be able to increase the total amount of research

they do with their funding, as they can carry out less of the more costly applied

research. Formally, presented with the link between a funding level and a1 ( ),

a type institution would claim to be of type min
©
a 1
1 (a ( ;B)) , ¯

ª
. In this

way, its marginal cost of doing applied research is as near as possible to 1, its

marginal cost of basic research.

3.4 Incentive Compatibility

In this subsection, I determine the constraints imposed by the information

disadvantage of the government. I take the standard revelation approach. It is

as if the government asked each institution to report its own type, and commits

to imposing a vector of variables as functions of the reported type; by the

revelation principle, the government cannot improve on the payo it can obtain

by restricting its choices to policies that satisfy the incentive compatibility

constraint, that is the property that no institution has an incentive to misreport

its type. This constraint is derived in Proposition 2. Recall that a policy can

be written as {r ( ) , a ( )} [ , ]̄, with r ( ) and a ( ) the total and the applied

13



research required of institution of type ,
£
,
¤̄
. Basic research follows

from r ( ) = a ( ) + b ( ).

Proposition 2 A policy {r ( ) , a ( )} [ , ]̄ is feasible and incentive compatible

if it satisÞes, for
£
,
¤̄
:

úr ( ) = c (a ( ) , , B) , r ( ) free; r
¡ ¢̄

= 0, (12)

úa ( ) 6 0, (13)

a ( ) a ( ;B) > 0, (14)

r ( ) a ( ) > 0. (15)

3.5 The optimal funding policy

I am now in a position to present the government maximisation problem. This

is the choice of a policy {r ( ) , a ( )}, which satisÞes the constraints given in

Proposition 2 and maximises the government objective function. As in Section

3.2, A and B, the aggregate amount of applied and basic research are best

treated as parameters chosen by the government, subject of course to (1) and

(7), their deÞnition as the sum of applied and basic research carried out in

all universities. Requirement (14), that a ( ) > a ( ;B), implies that the

government might want to exclude some institutions. As the proof shows, if

it does so, it will exclude institutions with above a certain threshold. This

threshold, 0

£
,
¤̄
, is itself a choice variable.

The government’s problem is therefore the following.

max
r( ),a( ),
A,B, 0

Y (A) + k (A+B) (1 + )

Z
0

[c (a ( ) , , B) + r ( ) a ( )] f ( ) d

s.t.: (12), (13), (14), (15), (7), (1). (16)

I can now derive the optimal funding policy. This is based on three func-

tions, a ( ;B) deÞned above, and aK ( ;B, ) and r ( ;B, 0), deÞned next.

For given parameters B > 0, > 0, let aK ( ;B, ) be the solution in a of

ca (a, ,B) =
Y 0 (A) + k

1 +
+

F ( )

f ( )
c a (a, ,B) . (17)
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The curve aK ( ;B, ) is drawn in Figures 1 and 2, and is intuitively discussed

following Corollary 2. Next, let r ( ;B, 0) be the solution to the following

di erential equation:

úr ( ) = c (r ( ) , , B) , r ( 0) = a ( 0;B) . (18)

That is, for given B, r ( ;B, 0) is the function r ( ) which satisÞes the incen-

tive compatibility constraint “shifted” to intersect a ( ;B) at = 0.

Assumption 3 (i) c (·) > ca (·)
caa(·)

; (ii) c (·) > c a(·)
c aa(·)

+ ca (·)
c aa(·)

d
d (F ( )f( ) )

F ( )
f( )

, (iii)

c aa (·) > 0.

The Þrst two statements in Assumption 3 impose restrictions on the cost

structure. Loosely speaking, they require c (·) to be “large”, that is that cost

di erences among institutions, measured by the parameter , are su cient im-

portant. But is unobservable, and measures the di erences in productivity

among institutions, and therefore the Þrst two statements in Assumption 3

simply require that information disadvantage of the government be su ciently

important. It is this disadvantage that makes the analysis relevant: in the

extreme polar case where all research institutions are identical, the govern-

ment’s inability to observe their productivity is obviously not a problem. Of

course, the considerable e ort that funding agencies exert to ascertain the re-

search potential of the research institutions they sustain suggests strongly that

these di erences are important in practice. The third statement is a regularity

restriction.

Proposition 3 Let Assumptions 1-3 hold. If problem (16) has a solution, then

there exist ,̃ K ( , 0] with < K 6
˜6 0 such that:

if [ , K) then a ( ) > a ( ;B) and b ( ) > 0;

if
h
K , ˜

´
then a ( ) = a ( ;B) and b ( ) > 0;

if
h
,̃ 0

i
then a ( ) = a ( ;B) and b ( ) = 0.

The following implication of Proposition 3 is worth illustrating formally, as

it helps illustrating the optimal policy in a diagram.
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Corollary 2 Let Assumptions 1-3 hold. If a solution to problem (16) exists,

then there exists A,B > 0, 0

£
,
¤̄
, and > 0, such that:

a ( ) = min
©
max

©
a ( ;B) , aK ( ;B, )

ª
, r ( ;B, 0)

ª

b ( ) = max
©
r ( ;B, 0) max

©
a ( ;B) , aK ( ;B, )

ª
, 0
ª

for [ , 0], and a ( ) = b ( ) = 0 for
¡
0,
¤̄
.

The optimal policy described in Proposition 3 and Corollary 2 is depicted

in Figure 1. In each panel of the Figure, the vertical axis measures the amount

of research at the optimal policy, and the horizontal axis an institution’s pro-

ductivity parameter, . Only institutions with below 0, the intersection

of r ( ;B, 0) and a ( ;B), receive any government funding. In each panel,

there are three di erent curves. The solid thin line is the locus r ( ;B, 0):

by Proposition 2, it represents the total amount of research carried out by a

type institution. The dotted line is locus a ( ;B), and the dashed line is

aK ( ;B, ). By Corollary 2, the amount of applied research each institution

does is given by the higher of these two curves, if it is below r ( ;B, 0), and

otherwise by r ( ;B, 0) itself. In the latter case, the institution does no basic

research. In both panels, the red thick curve is the amount of applied research

carried out by a type institution, and the distance between the latter curve

and r ( ;B, 0), shaded in grey in the diagrams, is the amount of basic research

carried out by a type institution.

The panels of Figure 1 di er in the position of the curve aK ( ;B, ). This

determines three possible patterns of complementary slackness of the con-

straints in Problem 16, indicated by the white numbers in a black disk. In

region 1, both (14) and (15) are slack; in region 2, constraint (14) is binding.

In region 3, (15) is binding. The conceptual di erence between regions 1 and

2 is that research institutions in region 2 choose their “preferred” combination

of applied and basic research, and those in region 1 are required/incentivised

to do more than this amount. In region 3 there are research institutions which

only do applied research.

When Assumption 2 is violated, applied research is less valuable; this pushes

down the curve aK ( ;B, ), and, if a solution exists, it will still satisfy Propo-

sition 3 and Corollary 2. However, the relative position of the three curves is
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Figure 1: Applied and basic research. High social value of applied research.

now illustrated by Figure 2: the most productive research institutions now do

carry out their preferred level of applied research, and if there are institutions

which are given an incentieve to do more than this, as in the right hand side

panel, they are the medium institutions.

These Figures illustrate how the pattern of funding is determined by the

position of the curve aK ( ;B, ). From (17), it is evident that this is a ected by

four factors: the direct e ect of applied research on national income, Y 0 (A); the

direct “prestige” e ect of research on the policy maker’s payo , k; the shadow

cost of public funds ; and Þnally, the endogenously determined overall e ect

of basic research on institutions’ cost of doing applied research, . The Þrst

three simply shift the dashed curve up and down in a parallel fashion (leaving

aside the indirect e ect through B). Thus, other things equal, increases in k

and in Y 0 (A) and decreases in all increase the amount of applied research,

and decrease the amount of basic research. The sign of the e ect for k and

follows from the fact that the cost of applied research is higher that that of basic

research, therefore, if research becomes more desirable, higher k, or cheaper to

fund, lower , more of the “expensive” type, applied research will be done.
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The term determines the distortionary e ect of information asymmetry. It

is 0 with perfect information, as can be seen in the comparison between (17)

and (9). Notice that it changes the amount of basic research done by the

most e cient institution: superÞcially, this might appear in contrast to the

“e ciency at the top” principle. In fact, information asymmetry a ects the

total amount of basic research that it is optimal to carry out, and therefore the

socially optimal amount of applied research that the most e cient institution

should do. A positive value of increases the amount done by more e cient

institutions, and reduces (more) the amount carried out by less e cient ones.

For higher values of , however this e ect is reduced by the incentive e ect:

in order to induce institutions to self-select, it is necessary to prevent high

type universities from pretending to be low type, and thus doing less applied

research and devote funds to the cheaper basic research: reducing su ciently

the amount of applied research makes this less attractive for a low institution.

Basic research is used to provide incentives for institutions to carry out applied

research in excess of a ( ;B), via a link between total funding and the amount

of applied research done. This also explains why the number of institutions

funded is reduced by asymmetric information. High cost institutions, which

would do some research if the government could observe their type, cannot

however be funded when the government has imperfect information, lest more

e cient institutions “pretend” to be ine cient to avoid doing research in excess

of their e cient level a (·), as the government would like them to, and increase

their spending on basic research.

The next Section describes in detail how the link between applied research

and total funding can be implemented in practice. Before, I consider a special

case, which illustrates the role of the basic research externality.

Assumption 4 The cost function c (a, ,B) is additively separable in (a, )

and B: there exist ĉ (a, ) and (B) such that c (a, , B) = ĉ (a, ) + (B) for

every (a, , B).

In words, B a ects only the Þxed cost of doing applied research.

Corollary 3 If assumption 4 holds, then ca
¡
aK (·) , , B

¢
= 1+

³
Y 0(A)
1+

+ 0 (B)F ( 0)
´
.
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Figure 2: Applied and basic research. Low social value of applied research.

In contrast, recall that for the curve a ( ;B), it is ca (a (·) , , B) = 1.

Therefore by how much applied research is pushed above the e cient level

in the most productive institutions, that is by how much the initial point of

the dashed curve aK (·) exceeds that of the the curve a ( ;B) depends on the

extent by which, Y
0(A)
1+

, the marginal beneÞt of an increase in applied research,

exceeds 0 (B)F ( 0), the marginal cost of an increase in basic research.

4 Implementation

This section investigates how a central funding agency can implement in prac-

tice the optimal policy derived in Proposition 2. As I have assumed, this agency

is constrained by the fact that basic research is unobservable: if an institution

wants, it is able to divert to applied research funding intended for basic re-

search. All an agency can therefore do is to provide a link between a target

amount of applied research carried out and the total amount of funding an

institution receives.

Formally, I want to derive the function C (a), which gives the total funding
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received as a function of the total amount of applied research carried out in an

institution. Since there is a one-to-one relationship between and a, this is a

well deÞned function.

The shape of this function depends on which the three regions identiÞed in

Proposition 2 the optimal choice belongs. To see this, consider an institution of

type which, given policy {r ( ) , a ( )} [ , ]̄ chooses r ( ), a ( ) and therefore

it obtains total funding t ( ). In region 1, the total funding received by this

type institution is

t ( ) = c
¡
aK ( ;B, ) , , B

¢
+
£
r ( ;B, 0) aK ( ;B, )

¤
.

The Þrst term is the cost of carrying out aK ( ;B, ) amount of applied research

and the terms in the square brackets the cost of basic research. For Þxed B

and , let K (a;B, ) be the inverse of the function aK ( ;B, ): K (a;B, )

is the value of such that aK ( ;B, ) = a. Next, consider an institution

which, faced with a schedule C (a) chooses to carry out a (minimum) amount

a of applied research (which, if the policy is incentive compatible, has therefore

type K ( ;B, )). The total funding it receives is given by:11

C (a) = c
¡
a, K (a;B, ) , B

¢
+ r

¡
K (a;B, ) ;B, 0

¢
a. (19)

Corollary 4 If a ( ) = K (a;B, ), then C (a) is increasing. C (a) is convex

if and only if a ( ;B)
>

aK( ;B, ) .

Therefore C (a) is convex if the relative slope of the dashed and dotted

curves is as in the LHS of Figure 1, concave if it is as in the RHS.

The same procedure can be applied to derive the shape of C (a) in the other

regions. In region 2, let (a;B) be the inverse function of a ( ;B), so that

total funding is given by:

C (a) = c (a, (a,B) , B) + r ( (a,B) ;B, 0) a. (20)

11Notice that, faced with (19), a type institution does indeed want to carry out precisely

a = aK ( ;B, ) applied research. To see this, note that it will solve

max
a>0

max {a+ [C (a) c (a, ,B)] , a ( ;B)} ,

where C (a) is given by (19). The Þrst order condition for the above is

ca
¡
a, K (a;B, ) , B

¢
= ca (a, , B).
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Figure 3: Implementation: The LHS of Figure 1.

Corollary 5 If a ( ) = a ( ;B), then C (a) is constant.

Finally region 3. Here with the same argument used for region 1, I show

that the function is again increasing and convex.

Corollary 6 If a ( ) = r ( ;B, 0), then C (a) is increasing and convex. More-

over, at the boundary between region 1 and 3 the slope of C (a) is increasing in

a.

Having determined the slope of the function C (a), consider Figure 3, to see

how the funding agency can implement it in practice. The Figure shows the

cartesian space, with the amount of applied research on the horizontal axis,

and the total funding on the vertical axis. The function C (a), deÞned for

a
£
a ( 0;B) ,max

©
aK ( ;B, ) , a ( ;B)

ª¤
is the red thick line: points on

this locus represent combinations of funding and applied research which the

funding agency allows research institutions to choose from. It is drawn for

the case where the relevant region for the high type research institutions is of

type 2 (that is for the LHS panel of Figure 1). Here, as shown in Corollary

5, funding as a function of total applied research is constant. Also drawn on

the diagram are the indi erence curves of for three institution types, and their

“feasible set”, the combinations of funding and the amount of applied research

which an institution can carry out with that funding. Consider Þrst a type

0 institution, shown on the LHS panel. Its indi erence curves are the solid

thin lines (they all reach a minimum at a = a ( 0;B): totally di erentiate

a+ t c (a, 0, B) to see this), and its feasible set is the grey shaded area (this

is the set {(a, t) R
+|c (a, 0, B) 6 t}). There is only one point available for
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this institution, the point on the red locus and on the “feasible set”, namely

(a ( 0;B) , C (a ( 0;B))). Not so however for more productive research insti-

tutions: take type 1 ( K , 0), illustrated in the middle panel. Its indi erence

curves are the dashed lines, and its feasible set again the grey area, clearly

bigger than a type 0 institution’s. It can choose any point in the grey area

and on the red line. The best among such points is (a ( 1;B) , C (a ( 1;B))),

point B in the diagram. Notice that, the required level of applied research,

a ( 1;B), will cost it only c (a ( 0;B) , 0, B), the vertical height of point A,

which is less that C (a ( 1;B)): after paying for applied research, it is “left”

with some funding which it will spend on basic research. This has marginal

cost of 1, rather than applied research, which, if pushed above a ( 1;B), would

have a marginal cost exceeding 1. A type 1 institution therefore carries out

an amount of basic research measured by the vertical distance between points

A and B.

Finally consider a very e cient institution, one with cost parameter 2 <

K. Its e cient level of applied research is a ( 2;B), as shown by point A in

the RHS panel of the Figure. This is the level it would choose if funding were

constant. But the optimal policy is designed so that this institution does more

than this amount, as the funding agency o ers increasing funding for research

institutions which exceed their e cient level of applied research: faced with the

red schedule, a type 2 research institution chooses the combination that allows

it to be on the highest possible indi erence curve, namely tangency point B

in the diagram.12 Note that the total cost incurred by this institution to carry

out the amount of applied research aK ( 2;B, ), say point C, is less than its

total amount of funding. It will spend the di erence to pay for basic research,

which therefore is given by the distance between B and C: the vertical height

of point C measures the amount spent on applied research, and so the distance

12When the curve C (a) is convex, as in Figure 3, then the tangency point is a local, and

hence a global, maximum. To see this, note that, at the tangency point (a2, C (a2)), with

a2 = aK ( 2;B, ), the slope of the indi erence curve is given by ca (a, ,B) 1. The slope

of the funding schedule is given by (A12). In a neighbourhood of a2, we have:

ca (a2 + , 2, B) ca
¡
a2 + , K (a2 + ;B, ) , B

¢
= ca (a2 + , 3, B)

¡
2

K (a2 + ;B, )
¢

.

For > 0 (resp < 0), the above is positive (negative), as aK (·) is decreasing and so K (·)

is too. Clearly if the curve C (a) is concave, then the tangency point is a maximum.
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between B and C is the amount of basic research that a type 2 does.

When the relative position of the curves a ( 0;B) and aK ( ;B, ) is in-

stead that shown in the RHS panel of Figure 1 the optimal funding can be

implemented by the schedule illustrated in Figure 4. This di er from the top

panel only in that the initial part of the schedule is also increasing. Notice how

a type 1 institution, illustrated in the middle panel of the Figure, spends all

of its budget on applied research, and still does more than its e cient level. As

before, a very low cost institution, 2 < K , which would choose to spend an

amount given by the height of point A on applied research if it were on a Þxed

budget, chooses instead point B, and spends an amount equal to the vertical

height of point C on applied research and the distance between C and B on

basic research.

To end this discussion, it is worth noting that when the social value of

applied research is low, so that the position of the curve aK ( ;B, ) is as

depicted in the RHS panel of Figure 2, then the optimal policy is implemented

simply by a policy of constant funding: all research institutions that agree to

carry out at least a ( 0;B) applied research, receive the funds necessary to pay

for it, which they can use in any way they choose. In this case the diagram

of the funding schedule looks exactly the same as the initial portion of the red

line on Figure 3, from a ( 0;B) to a
³
˜
´

.

I consider next which mechanism can in practical terms be used to induce

institutions to choose one point on the red line. This is a dual funding mecha-

nism: there is a Þxed part, and a output related part. SpeciÞcally suppose that

all institutions which can carry out at least a ( 0;B) applied research receive
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a lump sum t0 = c (a ( 0;B) , 0, B). In addition, institutions can apply to

have speciÞc projects funded through a grant. However, not all institutions

can apply for these grants, but, in order to qualify to apply institutions need

to carry out at least a ( K ;B) applied research. In this case it would receive

grant funding governed by the formula

g (a) = C (a+ a ( K;B)) c (a ( 0;B) , 0, B)

where g (a) is the amount of grant awarded for agreeing to carry out a units

of applied research, in addition to the qualifying level a ( K ;B). It is worth

noting that, at least for amounts in excess of the qualifying level below a given

level, the amount awarded does not cover the additional cost. Formally.

Corollary 7 Suppose K < ˜ = 0. There exists > 0 such that there exist

> K such that g ( ) < c (a ( K ;B) + , B, ) c (a ( K;B) , B, ) for

every ( K , ).

Graphically, consider Figure 3. According to the Corollary, the slope of the

red line in a neighbourhood of a ( K ;B), which gives the additional funding

received by an institution that just exceeds the qualifying level a ( K;B), is

less than the slope of the frontier at the same point, which given the additional

cost incurred by such an institution to exceed by a small amount the qualifying

level of applied research, a ( K;B).

The mechanism illustrated in the above paragraph constitutes an instance

of the principle of co-funding by the grant funding agency and the institutions.

This is in contrast with the idea of full economic costing, used, among others,

by the research councils in the UK (RCUK/UUK 2010). According to this

principle, grants are over funded, that is the amount of the grant awarded for

applied research exceeds the cost to carry out that research. The rationale is

precisely to ensure that there is no cross-subsidisation among an institution’s

various activities. My results here shows that the optimal policy is more subtle

and that the beneÞt of avoiding cross-subsidisation must be balanced with the

beneÞt derived from designing incentives to delegate funding decisions to the

institutions with the private information necessary to take allocation decisions

e ciently. The principle of co-funding may be reversed for higher values of

applied research, that is for very e cient institutions, and indeed, unit funding
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might become impossible, if the curve C (a) is concave. For the other regions it

is possible to derive similar results, but the taxonomy of each case is of limited

interest.

5 Concluding Remarks

Developed countries spend around one Þfth of their R&D expenditure on basic

research (Gersbach 2009, p 114). Should they spend more? Less? The UK

government funds research via two separates channels, quality related funding

and research grants from the research councils, in a proportion of roughly 2/3

and 1/3. Is this ratio “right”? Also, research grants are less evenly distributed:

the top 25 universities received 85% of the research grant funding, and 75% of

quality related funding. Are these proportions “right”? Government agencies

typically award research grants on a cost plus principle, whereas charitable

bodies favour co-funding of research activities. Which is better?

The theoretical guidance necessary to answer these questions, and more

generally to establish a microeconomic foundation to any empirical study of

research funding is relatively scant. In this paper, I o er a framework for the

provision of this guidance. I develop a model built on the ideas that research in-

stitutions can devote their research e ort to basic or applied research, which are

in a hierarchical relationship, that there are di erences in research productivity

among institutions, and that the government aims to distribute its funding in

the socially preferred manner, which in general di ers from the preferences of

individual institutions.
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Appendix

Proof of Proposition 1. Divide the government objective function (6) by (1 + ),

substitute (7) and the value of T to write the optimization problem as:

max
a( ),r( ),A,B

Y (A) + k (A+B)

1 +

Z ¯

[c (a ( ) , , B) + r ( ) a ( )] f ( ) d , (A1)

s.t. (1) and (7).

Next, following Leonard and van Long (1992, p 190), write (7) and (1) as

úb0 ( ) = [r ( ) a ( )] f ( ) , b0 ( ) = 0, b0
¡ ¢̄

= B, (A2)

úa0 ( ) = a ( ) f ( ) , a0 ( ) = 0, a0
¡ ¢̄

= A. (A3)

Ignoring for the moment the constraint r ( ) a ( ) > 0, the Lagrangian for (A1) is:

L (·) = [c (a ( ) , , B) + r ( ) a ( )] f ( ) + [ a ( ) + (1 ) (r ( ) a ( ))] f ( ) ,

where and (1 ) are the Lagrange multipliers for constraints (A3) and (A2). I

write the multiplier of (A2) as (1 ) to lighten notation. The Þrst order conditions

give (see Leonard and van Long, 1992, Theorem 7.11.1, p 255):

L

a ( )
= [ ca (a ( ) , , B) + 1 + (1 )] f ( ) = 0,

L

r ( )
= ( 1 + (1 )) f ( ) = 0,

=
k + Y 0 (A)

1 +
,

1 =
k

1 +

Z ¯

cB (a ( ) , , B) f ( ) d .

Rearranging, = 0, and the result follows.

Proof of Corollory 1. The problem in this case is the same as (A1), with the added

constraint a ( ) > a ( ;B). At the solution of problem (A1) derived in Proposition

1, this constraint is slack and so the solution found there remains a solution for the

new problem.

Proof of Proposition 2. Notice Þrst of all that b ( ) must be non-negative, and

so (15) must hold. For policy {r ( ) , a ( )} to be incentive compatible, every type

institution must (weakly) prefer to report to be of type that to pretend of to be of
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type x, for every x
£
,
¤̄
. This determines (12). To see how, begin to note that by

choosing to report type x
£
,
¤̄
, institution of type receives an amount of funds

for applied research a (x) and a total research funding c (a (x) , x,B)+r (x) a (x) =

c (a (x) , x,B)+ b (x). Total cost is observable, and so the institution needs to choose

research levels such that its total cost equals the last expression. So if a institution

of type has reported type x, it will choose research levels aL and bL (L stands for

“lying”) which maximise

(aL, bL) =argmax
a,b

a+ b,

s.t.: c (a, , B) + b = c (a (x) , x,B) + r (x) a (x) ,

a > a (x) .

Or

aL =max
a
a+ c (a (x) , x,B) + r (x) a (x) c (a, , B) ,

s.t.: a > a (x) .

Which has solution aL = a ( ;B) if a ( ;B) > a (x), and aL = a (x) if a ( ;B) <

a (x). That is:

aL = max {a ( ;B) , a (x)} ,

bL = c (a (x) , x,B) + r (x) a (x) c (aL, , B) ,

and yields payo :

(x, ) =

a ( ;B) + c (a (x) , B, x) + r (x) a (x) c (a ( ;B) , , B),

if a ( ;B) > a (x),

a (x) + c (a (x) , x,B) + r (x) a (x) c (a (x) , , B),

if a ( ;B) < a (x);

consider local maxima:

(x, )

x
=

(ca (a (x) , x,B) 1) úa (x) + c (a (x) , x,B) + úr (x),

if a ( ;B) > a (x),

ca (a (x) , x,B) úa (x) + c (a (x) , x,B) + úr (x) ca (a (x) , , B),

if a ( ;B) < a (x).

For incentive compatibility, this needs to be maximised at x = . Evaluating the

above at x = , we get:

(x, )

x
=

(
c (a (x) , x,B) + úr (x) if a ( ;B) > a (x),

c (a (x) , x,B) + úr (x) if a ( ;B) < a (x).
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The Þrst line holds because the optimal a when a ( ;B) > a (x) is a ( ;B) and

ca (a ( ;B) , x,B) 1 = 0: this establishes (12).

Now (13): following La ont and Tirole (1993, p 121), for a policy to be incentive

compatible it must be that
2 ( , x)

x
> 0.

We have
2 ( , x)

x
= ca (a (x) , , B) úa (x) > 0,

given our assumption that ca (a (x) , , B) > 0, (13) must hold.

Finally, (14). This follows from

d (c (a ( ) , , B) + r ( ) a ( ))

d
6 0. (A4)

This is the constraint that total funding be decreasing in . If it were not the case,

then an institution could simply claim to have a higher than it has, thus receiving a

higher funding, which it could spend on unobservable basic research. Expand (A4):

ca (a ( ) , , B) úa ( ) + c (a ( ) , , B) + úr ( ) úa ( ) 6 0

which, using (12), becomes

[ca (a ( ) , , B) 1] úa ( ) 6 0,

since úa ( ) 6 0, ca (a ( ) , , B) must exceed 1, which is (14).

Proof of Proposition 3. Begin by noting that a ( ) [a ( ;B) , r ( )], and there-

fore a solution exists only for values of such that r ( ) > a ( ;B), that is for

6 0 at the candidate solution. This is because, by virtue of Assumption 3(i),

r ( ) > a ( ;B) to the left of their intersection, 0. As in Proposition 1, divide the

maximand of problem (16) by (1 + ), and construct the Lagrangian.

L (·) = [c (a ( ) , , B) + r ( ) a ( )] f ( ) µ ( ) c (a ( ) , , B)+

( ) (a ( ) a ( ;B)) + ( ) (r ( ) a ( ))+

[(1 ) (r ( ) a ( )) + a ( )] f ( ) , (A5)

where µ ( ), ( ), ( ), are the multipliers associated to constraints (12), (14), and

(15) respectively. As before (1 ) > 0 and > 0 are the multipliers for (A2) and
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(A3). I have ignored constraint (13): it will be seen to be satisÞed at the solution

found when it is ignored. The Þrst order conditions on r ( ) and a ( ) are given by:

L

r ( )
= úµ ( ) = f ( ) ( ) , µ ( ) = 0, µ

¡ ¢̄
free; (A6)

L

a ( )
= [ ca (a ( ) , , B) + + ] f ( ) + ( ) ( )

µ ( ) c a (a ( ) , , B) = 0. (A7)

(A6) has solution:

µ ( ) = F ( ) ( ) , (A8)

having deÞned ( ) =
R ³

˜
´
d .̃ The Þrst order conditions for A and B are the

same as in Proposition 1, giving = k+Y 0(A)
1+ . Expand the condition on (1 ),

using (A8), and the deÞnition of a ( ;B), which implies a
B

= caB(·)
caa(·)

:

1 =
k

1 +
+

Z
0

cB (·) f ( ) ( F ( ) ( )) c B (·) + ( )
caB (·)

caa (·)

¸
d .

Integration by parts gives:

1 =
k

1 +
cB (a ( 0) , 0, B)F ( 0) + (1 )

Z
0

F ( ) c B (·) d

+

Z
0

( ) c B (·) + ( )
caB (·)

caa (·)

¸
d ,

and so

1 =
k
1+ cB (a ( 0) , 0, B)F ( 0)

1
R

0 F ( ) c B (·) d
+

R
0

h
( ) c B (·) + ( ) caB(·)

caa(·)

i
d

1
R

0 F ( ) c B (·) d
. (A9)

From (A7) we obtain the optimality condition for a ( ).

ca (a ( ) , , B) =
Y 0 (A) + k

1 +
+ +

( ) ( )

f ( )

F ( ) ( )

f ( )
c a (a ( ) , , B) .

(A10)

Next notice that > 0. To see this, notice that (1 ) measures the beneÞt

of relaxing the constraint b ( ) > 0, which has a cost, measured in social value of

monetary units, of 1. Notice that the funding agency can always increase b ( ) if it

wants, because it can simply increase the funding to all research institutions, and,

since at the optimum they all do at least a ( ;B), they all prefer to spend the

additional funding on basic research. Therefore the beneÞt of increasing b ( ) cannot

exceed the cost at the optimum: (1 ) 6 1.
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Now deÞne the function aK ( ;B, ) as the solution in a of

ca (a, , B) =
Y 0 (A) + k

1 +
+

F ( )

f ( )
c a (a, ,B) . (A11)

If = 0, then aK ( ;B, ) = aK ( ;B, ) and if > 0, then aK ( ;B, ) >

aK ( ;B, ), since c a (·) > 0.

Next notice that depending on the combination of complementary slackness for

constraints (14) and (15), a value of a ( ) belongs to one of four possible regions:

1. a ( ) a ( ;B) > 0 and r ( ) a ( ) > 0. Therefore, ( ) = ( ) = 0,

which means r ( ) > a ( ) > a ( ;B), and in this region, r ( ) = r ( ;B, 0),

a ( ) = aK( ) ( ;B, ).

2. ( ) > 0 and r ( ) a ( ) > 0. Here, a ( ) a ( ;B) = 0 and ( ) = 0, and

so r ( ) = r ( ;B, 0), a ( ) = a ( ;B).

3. a ( ) a ( ;B) > 0 and ( ) > 0. In this region ( ) = 0 and r ( ) = a ( ) =

r ( ;B, 0).

4. ( ) > 0 and ( ) > 0. Here, r ( ) = r ( ;B, 0) = a ( ;B) = a ( ), and

therefore this region is just the single intersection point between a ( ;B) and

r ( ;B, 0).

As a preliminary step, I show that

if
h
, ˜
´

then a ( ) > 0 and b ( ) > 0;

if
h
,̃ 0

i
then a ( ) > 0 and b ( ) = 0.

Proposition 3 requires that belongs to regions 1 or 2, that is that a ( ) [a ( , B) , r ( ;B, 0)).

Suppose by contradiction that a ( ) = r ( ;B, 0). Then b ( ) = 0 in
h
, ˜
i

for

some ˜ > . Notice next that it cannot be ˜ = 0, otherwise b ( ) = 0 in
£
,
¤̄

and so B = 0, against the Inada condition. That is, there is ˜ > 0 such that

a ( ) = aK( ) ( ;B, ) < r ( ;B, 0) in a right neighbourhood of ,̃ with of course

a
³
˜
´
= r

³
;̃B, 0

´
= aK( )

³
;̃B,

´
. Now we show that at any intersection be-

tween r ( ;B, 0) and aK( ) ( ;B, ) the latter is less steep than r ( ;B, 0), and

thus we obtain a contradiction: if aK( ) ( ;B, ) is less steep than r ( ;B, 0) then

it must be above it in a right neighbourhood of .̃

Lemma A1 aK ( ;B, ) > r ( ;B, 0) for > .̃
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Proof. To see this, compare aK ( , B, g) and r ( ;B, 0) at their intersection. Since

we are assuming that a ( ) > r ( ;B, 0), we have ( ) = d
d

= 0. Moreover, since

a ( ) is above a ( ;B) in
h
, ˜
i
, it must be F ( ) ( ) > 0 in

h
, ˜
i
. Next totally

di erentiate (A11):

caa (·) +
gF ( )

f ( )
c aa (·)

¸
da+

ca (·) +
gF ( )

f ( )
c a (·) + ca (·) g

d

d

µ
F ( )

f ( )

¶¸
d = 0.

Hence:

aK ( ;B, g)
=

ca (·) + gF ( )
f( ) c a (·) + ca (·) g d

d

³
F ( )
f( )

´

caa (·) +
gF ( )
(1+ )f( )c aa (·)

.

I need to verify that the following holds:

ca (·) + gF ( )
f( ) c a (·) + ca (·) g d

d

³
F ( )
f( )

´

caa (·) +
gF ( )
f( ) c aa (·)

> c (·) .

By Assumption 3, c aa (·) > 0, and so I can multiply through and rearrange:

gF ( )
f( )

caa (·)
c a (·) + ca (·)

d
d

³
F ( )
f( )

´

F ( )
f( )

c aa (·) c (·) < c (·)
ca (·)

caa (·)
.

Again, by Assumption 3, the RHS is positive and the LHS is negative. Therefore, at

their intersection, aK(·) >
r (·) , that is r (·) is steeper, and so it is below aK (·) in a

right neighbourhood of their intersection. The contradiction establishes the Lemma.

The Proposition now follows immediately.

Proof of Corollary 2. Proposition 3 shows that a ( ) is one of a ( ;B), aK ( ;B, )

or r ( ;B, 0). Moreover, since it must lie between a ( ;B) and r ( ;B, 0), it can

only equal aK ( ;B, ) — intersections excepted — between them. The second line

follows from the Þrst.

Proof of Corollary 3. Omitted.

Proof of Corollary 4. Di erentiate (19) with respect to a, using (12):

C 0 (a) = ca
¡
a, K (a;B, ) , B

¢
1. (A12)
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The above is positive because aK ( ;B, ) exceeds a ( ;B). C is therefore increasing.

For the second part of the statement, expand C 00 (a):

C 00 (a) = caa (·) + ca (·)
K (a;B, )

a
.

This is positive if ca (·)
caa(·)

= a ( ;B)
>

aK( ;B, ) .

Proof of Corollary 5. The derivative of (20) is:

C 0 (a) = ca (·) + c (·)
(a;B)

a
+

r ( (a;B) ;B, 0) (a;B)

a
1 = 0,

as ca (·) = 1 along a ( ;B).

Proof of Corollary 6. Let r (a;B, 0) be the inverse function of r ( ;B, 0), and

total funding is given by (recall that b ( ) = 0 in this region):

C (a) = c (a, r (a,B, 0) , B) . (A13)

Di erentiation with respect to a yields:

C 0 (a) = ca (·) +
c (·)
r (·)

= ca (·) 1.

Since r ( ;B, 0) > a ( ;B) except at 0, the above is positve in
³
,̃ 0

´
. To estab-

lish convexity, take C 00 (a):

C 00 (a) = caa (·) + ca (·)
r (a;B, 0)

a
,

which is positive as ca (·)
caa(·)

>
r ( ;B, 0) = c (·).

For the second part of the statement, note that, in region 3 (that is to the left of

their intersection), the slope of C (a) is ca (a,
r (a;B, 0) , B) 1. In region 1, namely

to the right of their intersection, the slope is ca
¡
a, K (a;B, ) , B

¢
1. Consider a

right neighbourhood of their intersection: the di erence in slope is

ca (a,
r (a;B, 0) , B) ca

¡
a, K (a;B, ) , B

¢

= ca (a, 3, B)
¡
r (a;B, 0)

K (a;B, )
¢

. (A14)

This is positive, since r (a;B, 0)
K (a;B, ) > 0, establishing the statement.

Proof of Corollary 7. Omitted.
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