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Preface: Climate Risk Management

- Address specific climate risks
In sectoral decisions
(agriculture, health, water, etc)

OPPORTUNITY

+ Better management of current
climate variability can help build
resiliency to climate change

Probability of Occurrence (%)

- Capitalize on good climate Sodl .

o ocioeconomic Output
conditions as well as reduce (e.g., maize yield, hydroelectricity generation)
vulnerability to negative
Impacts
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e.g., droughts/floods
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Qutcome
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Option 3

Option 2

for example, a
drought-tolerant
seed variety may

not be as high-

yielding as a
normal one, given
sufficient rainfall
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1. What are Climate Change Projections? — Climate Models
2. What do the models say for South America?

3. What are the sources of uncertainty?

4. What are the options for using the information for adaptive management of
water resources? — Managing climate risks across timescales



1. Climate Models and Climate Change Projections



3-D Dynamical Models
(General Circulation Models) £ e

Atmosphere (including land
surface) (AGCM)
Ocean (sometimes including

sea ice) (OGCM)
Coupled Atmosphere-Ocean

(CGCM, AOGCM)

Uses:
» Simulations: 3-dimensional circulation of the atmosphere and/or ocean

* Experiments: Can modify any aspect of the Earth or climate system or its forcing
and examine the response
* Forecasting

* Weather forecasts

* Seasonal-to-interannual forecasts

* Climate change projections
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Modeling the Climate System

. Includes the Atmosphere,
Incoming Solar Land, Oceans, Ice, and Biosphere
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GCM Evolution

Mid-1970s Mid-1980s Early 1990s lote 1990s Around 2000 Early 2000s

Atmosphere Atmosphere Atmosphere Atmosphere Atmosphere Atmosphere

land surfoce Lland surfoce lond surfoce lond surfoce
Ocean & sea-ice Ocean & sec-ice @ & secice
Sulphote cerosol Sulphate aerosol

Development of e
climate models  Carbon cycle
over the last 25 Dynome
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how the different —
components are
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Source: http://www.bom.gov.au/info/climate/change/gallery
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2. What do the models say for South America?
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Figure 11.15. Temperature and precipitation changes over Central and South America from the MMD-A1B simulations. Top row: Annual mean, DJF and JJA temperature

change between 1980 to 1999 and 2080 to 2099, averaged over 21 models. Middle row: same as top, but for fractional change in precipitation. Bottom row: number of models
out of 21 that project increases in precipitation.

IPCC, AR4, WG
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... Important to interpret regional changes in the
context of global picture

PROJECTIONS OF SURFACE TEMPERATURES
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Figure SPM.6. Projected surface temperature changes for the early and late 21st century relative to the period 1980-1999. The central
and right panels show the AOGCM multi-model average projections for the B1 (top), A1B (middle) and A2 (bottom) SRES scenarios
averaged over the decades 2020- 2029 (centre) and 2090-2099 (right). The left panels show corresponding uncertainties as the relative
probabilities of estimated global average warming from several different AOGCM and Earth System Model of Intermediate Complexity
| PCC AR4 WG '1 studies for the same periods. Some studies present results only for a subset of the SRES scenarios, or for various model versions.
) ) Therefore the difference in the number of curves shown in the left-hand panels is due only to differences in the availability of results.
{Figures 10.8 and 10.28}



PRoJECTED PATTERNS OF PRECIPITATION CHANGES

20 -10 -5 5 10 20

Figure SPM.7. Relative changes in precipitation (in percent) for the period 2090-2099, relative to 1980-1999. Values are multi-model
averages based on the SRES A1B scenario for December to February (left) and June to August (right). White areas are where less than
66% of the models agree in the sign of the change and stippled areas are where more than 90% of the models agree in the sign of the
change. {Figure 10.9}
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3. Sources of uncertainty



There is uncertainty in IPCC model projections.

e Emission scenarios
 Model formulation
 Internal variability

are all sources of uncertainty.

Uncertainty can vary in character depending
on variable considered, and on spatial/temporal
scales considered.



Trust in Models (Outline & Main Points

1) Models are based on physical laws (conservation of
momentum, energy, etc.

2) Models can simulate the current climate (mostly)
- Temperatures, precipitation patterns, heat transports

3) Models can produce features of past climates & climate
changes (mostly)

- faster increases in night T than day T
- accelerated Arctic warming
- Post-volcano cooling

=» Assuming we do trust the models #kinda) how best to use
the information? What specificity o
information can we expect on seasonal to centennial
timescales?



Current Climate

Surface temperature (contours)

Error in multi-model mean
temperature (shading)

180 -120 -60

Typical magnitude of error
In individual model
(i.e. RMSE across models)

3 Dec 2008



Current Climate

Observed
Precipitation

Multi-Model
Average
Precipitation

3 Dec 2008
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Reproducing the Past
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Correlation-type measure perhaps less informative here than
the result that global temperature increases (particularly in the
past few decades) if anthropogenic forcings are included.
Notice also the clear episodic cooling response due to

large volcanic eruptions.



On average, the global models can capture the
main features of climatological patterns of
temperature and precipitation

but ...



Trends In annual means over 1951-1999
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Why the disagreement”



Why the disagreement”

Trends In tropical sea surface temperatures

a) Observed b) Coupled Simulat_[ons
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These mis-represented mterdeoadal trends are
particularly an issue for “near term” climate change
until 2050. They are less problematic as the signal
of the forcing comes to dominate at end-of-

century.




Decadal forecasts — Can we predict this low-
frequency ocean evolution?




Decadal prediction skill over land: Yet to be demonstrated
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» The forecast “target” here is precipitation averaged over the period 2-5 years ahead. Statistics
are computed over 40 forecasts that were produced using a sophisticated modeling and
prediction scheme that targets the decadal scale.

» Two metrics for forecast skill are shown (top and bottom rows). Third and fourth columns show
skill improvement (if any) resulting from ocean initialization.

« Conclusion: Little if any skill evident in terrestrial Africa, including the Western Cape.



4, What are the options for using the information
for adaptive management of water resources?

Managing climate risks across timescales



Timescales of Variability in Observations

e.g. Climate Variability & Change in CO

Temperature

Annual-Mean Temperature Anomaly (deg. F)
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* Interannual variability has largest amplitude at local scales!



* Interannual variability has largest amplitude at local scales!

- much is understood about interannual variability driven by ENSO



* Interannual variability has largest amplitude at local scales!
- much is understood about interannual variability driven by ENSO

* interdecadal variability is much more poorly understood



Seasonal probabillistic
forecasts

Mid-Sep 2012 Plume of Model ENSO Predictions
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Seasonal probabillistic
forecasts

Mid-Sep 2012 Plume of Model ENSO Predictions

IRI Multi-Model Probability Forecast for Precipitation

for October-November-December 2012, Issued September 2012
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What Seasonal Forecasts

Represent
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Philippines example of using seasonal climate
forecasts in reservoir management




How can climate science knowledge and models
help inform adaptation planning?

—xXample:
the Angat
reservolr in the
Philippines
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Integrating Forecasts for Reservoir
Management: Angat, Philippines

Project objectives:

Understand Angat reservoir decision
process and appropriate entry points for
improved climate information

*Work with PAGASA to develop downscaled
forecasts of inflow

Integrate inflow forecasts into existing
reservoir model to manage competing water
use




Angat Reservoir:
Key Collaborators

Project Partners

*National Water Resources Board
*PAGASA

*University of the Philippines Los Banos

Extensive consultation with water users,
including:

*National Irrigation Administration (national
and provincial levels)

*Metropolitan Waterworks and Sewerage
System (+2 concessionaires)

*National Power Corporation
Support from:
USAID, NOAA, Columbia University
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Climate risk management in reservoir operation
context (simplified)

- Allocations of water are made after the rainy season (when reservoir peaks)
for the coming year, to municipal and agricultural users

« Water level in reservoir is managed to keep within upper and lower rule
curves

- If the water level drops below the lower rule curve, the promised allocation
cannot be kept, and there is failure of supply

* The probability of being able to deliver is the reliability of supply
» A target reliability might be 90%
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Reservoir management in Philippines
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Reservoir management in Philippines

1. Reservoirs operated without forecasts in
risk averse mode
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Reservoir management in Philippines

1. Reservoirs operated without forecasts in
risk averse mode
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How to translate (or “tailor”) c
needs of reservoir

ﬂ

mate forecasts to the

nanagers”

General Circulation Model Forecasts

Dynamical Downscaling Statistical Downscaling

Bias Correction

Hydrological Models Hydrological Models

Multi-model Combinations

Streamflow Forecast



motivated by experience at Climate
Qutlook Fora (COFs) in Africa

Tool for tailoring seasonal forecasts

i Climate Predictability Tool, v. 6.03




motivated by experience at Climate
Outlook Fora (COFs) in Africa

Tool for tailoring seasonal forecasts

: Climate Predictability Tool, v. 6.03 - O] x|
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Principal Components Regression (PCR)

CLIMATE PREDICTABILITY
TOOL

Y= Ax + b

Ilz I | I 1 e 7 ) O e N | E s B S SR | D00 2 e e o B
L G 1. 1 W A T -E A N D S e R s R



Tailoring seasonal forecasts for reservoir inflow B Lyon (IR))
A. Lucero (PAGASA)

Historical Angat Inflow Observations (1968—2000)

Sea Surface Temperatures (1968—-2000)
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Tailoring seasonal forecasts for reservoir inflow B Lyon (IR))
A. Lucero (PAGASA)
Historical Angat Inflow Observations (1968—2000)

Sea Surface Temperatures (1968—-2000)
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Tailoring seasonal forecasts for reservoir inflow B Lyon (IR))
A. Lucero (PAGASA)

Historical Angat Inflow Observations (1968—2000)

Sea Surface Temperatures (1968—-2000)
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Tailoring seasonal forecasts for reservoir inflow B Lyon (IR))
A. Lucero (PAGASA)

Historical Angat Inflow Observations (1968—2000)

Sea Surface Temperatures (1968—-2000)
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Tailoring seasonal forecasts for reservoir inflow B Lyon (IR))
A. Lucero (PAGASA)

Historical Angat Inflow Observations (1968—2000)

Sea Surface Temperatures (1968—-2000)

A A A | A | A
QN°E 120'E 1| &OE 1850° 150°W 120°W¢ Q0w o'W
Longitude

1

orecasts (green) (£ 1000)

M

Observations (red) /

I I
I I
| T
I I
| |

LR 4 150 130 12 14T '\ XT Loy
Lorgtude

1965 1970 1975 1980 1985 1990 1995 2000

ersenble member 4 Lead Time 0.5 months Stant Time 0000 3 Sep 1997

|Pvenue 850 mb Laad Time 0.5 menhs e




Tailloring seasonal forecasts for reservoir inflow
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Tailloring seasonal forecasts for reservoir inflow

Sea Surface Temperatures (1968—-2000)

B. Lyon (IRI)
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Tailloring seasonal forecasts for reservoir inflow

Sea Surface Temperatures (1968—-2000)
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Managing Climate Risk
in Water Supply Systems

Materials and tools designed to empower technical professionals

to better understand key issues

Link to Water CRK manual

http://crk.iri.columbia.edu/


http://crk.iri.columbia.edu
http://crk.iri.columbia.edu
http://portal.iri.columbia.edu/portal/server.pt/gateway/PTARGS_0_4972_7464_0_0_18/TR10-15WaterCRK_final_web.pdf
http://portal.iri.columbia.edu/portal/server.pt/gateway/PTARGS_0_4972_7464_0_0_18/TR10-15WaterCRK_final_web.pdf

—~NSO Phase composites

Figure 5.6

Partitioning approach for

identifying relationships.

Shown are the ranges of

historical OND Angat Reservoir

inflows corresponding to three

categories of ENSO condi-

tions during the preceding

. July-August-September. The
horizontal bar shows the mean

5 8 &5 8

inflow, while the length of the

vertical bars represents the full
. range of inflow values. Note the
significant difference between
inflows during El Nifio and
&00 . La Nifia events and the very

limited overlap.

Source: SST data from NOAA
4m NCDC ERSST v.2 (Smith and
Reynolds, 2004); Angat inflow data
Em from Philippines National Power

Corporation

Inflow for OND (mcm)
o
=

El Nifio La Nifa Meutral
ENSO Phase

Figure 5.7

0.14 Probabilistic three-month
(October-November-
December) inflow dis-
tribution for the Angat
=== E| Nific Years Reservoir based on mean

inflow across all years, in
== |a Nina Years El Nifio years, and in La
Nifa years.
Each distribution is constructed

— All Years

0.12

0.10

0.08

using the mean across appro-
priate years and the standard
deviation for the entire histori-

0.06

Probability (%)

cal period. Although there is
overlap, the El Nifio conditions
0.04 result in reduced average pre-
cipitation and inflow, while La
Nina conditions result in higher
0.02 average inflows.

Source: SST data from NOAA
NCDC ERSST v.2 (Smith and

U 390 éﬂﬂ ?Uﬂ 1 20{} 1 SGD 1 E,C}G 2 1 {}O Reynolds, 2004); Angat inflow data

from Philippines National Power
|nf|ow Corporation

Link to Water CRK manual



http://portal.iri.columbia.edu/portal/server.pt/gateway/PTARGS_0_4972_7464_0_0_18/TR10-15WaterCRK_final_web.pdf
http://portal.iri.columbia.edu/portal/server.pt/gateway/PTARGS_0_4972_7464_0_0_18/TR10-15WaterCRK_final_web.pdf

Integration of Climate Forecasts into
Reservoir Management Tool
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Tool: shows probability associated with
particular allocations and forecasts
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Approaches for longer timescales



A stochastic simulation approach
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- Concept:
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possible scenarios



A stochastic simulation approach

- Concept:

» given the large uncertainty of climate change projections, one approach is
to test the sensitivity of water-allocation reliability to synthetic scenarios of
iInflow to the reservoir, based on the statistics of historical data and some
possible scenarios

* The inflow model:

» A first-order auto-regressive model



A stochastic simulation approach

- Concept:

» given the large uncertainty of climate change projections, one approach is
to test the sensitivity of water-allocation reliability to synthetic scenarios of
iInflow to the reservoir, based on the statistics of historical data and some
possible scenarios

* The inflow model:

» A first-order auto-regressive model

Xt =c+pXiq +&



A stochastic simulation approach

- Concept:

» given the large uncertainty of climate change projections, one approach is
to test the sensitivity of water-allocation reliability to synthetic scenarios of
iInflow to the reservoir, based on the statistics of historical data and some
possible scenarios

* The inflow model:

» A first-order auto-regressive model
Ny e e i e TS

Xe=c+pXi g 5 NIV R T P WY WSV

ey A il B

£0

60



A stochastic simulation approach

- Concept:

» given the large uncertainty of climate change projections, one approach is
to test the sensitivity of water-allocation reliability to synthetic scenarios of
iInflow to the reservoir, based on the statistics of historical data and some
possible scenarios

* The inflow model:

» A first-order auto-regressive model
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» Superimpose linear trends c=c(t)



Simulated flow traces:

Historical interannual variability + long-term trend

Inflow {(mcm)
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Year

Figure 5.9 (a)
Projected inflow traces
with a long-term trend
of -20%, interannual
variability consistent with
the historical record, and
no systematically im-
posed multidecadal vari-
ability. Traces sampled from
100 simulations by selecting
every 10th trace after ranking
by average inflow. Includes
trendline average for all inflow
traces (4.2mcm/year decrease)

Source: Simulated traces from IRI;
Angat inflow and storage level
data from Philippines National

Power Corporation



Simulated flow traces:
Interdecadal variability, NO long-term trend

Figure 5.9 (b)

Projected inflow traces
with no systematically im-
posed long-term trend,
but with a randomly
imposed multidecadal
variability (imposed lag

1 autocorrelation, r=0.8).
Traces sampled from 100 simu-

1800
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Inflow (mecm)

lations by selecting every 10th
trace after ranking by slope of
trace trendline (derived using
ordinary least squares regres-

sion). Includes trendlines for

2008 2013 2018 2023 2028 2033 2038 2043 2048 inflow traces with 10th highest
(15.7mcm/year increase) and

10th lowest (16.4mcm/year

Year

decrease) slope.

Source: Simulated traces from IRI;
Angat inflow and storage level
data from Philippines National

Power Corporation
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Figure 5.9 (c)
Projected inflow traces
with a long-term trend
of -20 and a randomly
imposed multidecadal
variability (imposed lag 1
autocorrelation, r=0.8).
Traces sampled from 100 simu-
lations by selecting every 10th
trace after ranking by slope of
trace trendline (derived using
ordinary least squares regres-
sion). Includes trendlines for
inflow traces with 10th highest

2028 2033

Year

2038 2043 2048 (11.3mcm/year increase) and
10th lowest (20.7mcm/year
decrease) slope.



Impact of linear trend on reliability

Reliability (%)
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Figure 5.10

Reliability based on aver-
age of 100 simulated
projections of inflow
traces with a long-term
trend of -20% and no
multidecadal variability
(the type illustrated in
Figure 5.9a).

The reliability is calculated

as the percent of simulations

in which the reservoir level is
above a given threshold (lower
rule curve) at the end of March
each year. The solid brown
lines indicate the average of
the reliability values for the first
and last 10-year period (i.e.,
2008-2017 and 2038-2047).



Scenario Cumulative Average Average
deficit statistic reliability reliability
(mcm) first 10 years last 10 years

No trend and
no multidecadal 59 64% 65%

signal

Trend of +20%
and no multi- 33 68% 82%
decadal signal

Trend of -20%
and no multi- 94 65% 49%
decadal signal

Trend of +20%
with multidecadal 64 70% 79%
signal

Trend of -20%
with multidecadal 198 65% 46%
signal

No trend, but
with multidecadal 145 64% 62%

signal

'The results in Table 5.2 reveal the significance of the multidecadal signal.

Because a certain phase of a multidecadal signal might lead to dry
conditions over several years, this will increase the likelihood of consecu-
tive shortfalls and shortfalls of greater severity. This will not usually be
captured in changes in simulated average reliability, so it is important to
develop metrics that capture such sensitivity in the system and provide a
comprehensive risk assessment.

Table 5.2

Sensitivity metrics for
reservoir system based
on simulated climate
scenarios.

Reliability based on average

of 100 simulated projections

of inflow traces under various
scenarios (with or without a
long-term trend of +/-20% and
with or without a multidecadal
signal introduced by adding
autocorrelation with a lag
correlation of .8). Cumulative
deficit statistic is the maxi-
mum cumulative shortfall for
consecutive shortfall years (over
the last ten years) that would be
expected to be exceeded 10%
of the time, where the shortfall
(deficit) is the difference be-
tween the threshold level and
the simulated reservoir level

at the end of the period. No
shortfall is experienced if the
reservoir level meets or exceeds
the lower rule curve at the end
of the period. The reliability

is calculated as the percent

of simulations in which the
reservoir level is above a given
threshold (lower rule curve) at
the end of the period. Aver-
age reliability for first 10 years
based on 2008-2017, for last

10 years based on 2038-2047.
The results reveal the significant
effect of multidecadal vari-
ability on the cumulative deficit
statistic; even when there is no
systematically imposed long-
term trend, the existence of the
multidecadal variability results
in a significant increase in the
possible cumulative deficits that
must be planned for.



Toward greater realism — Incorporating IPCC
Scenarios

Slides from Arthur Greene



A region of interest: The Western Cape, South Africa

| Water Management
Areas

/\/ Rivers

Study Area
® Cape Town
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Rivarmsonderend

o Breede .
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High economic value: Agriculture, urban water (principal supply for Cape Town)
Population increase + projected rainfall decline: Collision trajectory...

Problem: How to anticipate potential climatic stresses — and their socioeconomic
consequences.

The decadal scale becomes important for longer-range planning.



Future of the Western Cape: Lines of evidence

Annualized regional data IPCC: Climate change Observed daily variability

» To generate future climate outlooks, information from a variety of sources is
synthesized, including climate change projections from IPCC models, the
characteristics of observed variability and theoretical expectations.

« Salient question: Can climate models predict variations on the decadal scale?



Elements of a simulation model

Climate change (trend-like) IPCC and local observations IPCC (pr) / linear regression (T)
Annual-to-decadal Regional-mean observations Vector autoregressive — VAR(1)
Subannual (seasonal to daily) Local obs, regional coherence K-NN resampling

The table describes elements of a complex simulation scheme, designed to reproduce
important characteristics of the observed climate while also incorporating IPCC-based
climate change information. Some important points:

*The climate change element varies among IPCC models (see plot); the distribution is
sampled in order to generate simulations.

*The three components (table, above) are not assumed to be independent.

*Given the absence of demonstrated decadal prediction skill, a “VAR(1)” model is used to
Simulate variations on the annual-to-decadal scale. This model takes into account the
simultaneous variations of precipitation and temperature.

*Subannual variations are resampled coherently across the domain.
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Example simulations
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Two simulations for the same catchment are shown, including observed values during
1950-1999. At left the 2041-2050 decade is unusually dry; at right it is wet. The median
precipitation trend from the IPCC distribution is used. At left, the drying due to this long-range
trend is doubled by the decadal fluctuation; at right it is cancelled. Trend alone causes drying
of about 10% for the 2041-2050 decade.
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Important Issues

- Are the relevant climate processes represented in the simulations?

- Do known modes of climate variability (ENSO, SAM, IPO) impact the region?

- How may different anthropogenic forcings play a role in the region, such as
aerosols, stratospheric ozone?



Example: 2 IPCC CGCMs,

Dynamical Downscaling? ot downscaled with same

regional model (RCM).
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Tropical Pacific Trend Pattern vs
ENSO Variability

La Nina-like < > EI Nino-like
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* Interannual and interdecadal variability
may swamp the climate change signal

* In the near-term (e.q. til 2050), decadal
variability may be large and not
represented in IPCC models

+ developing methods to manage
today’s year-to-year variability can
help build resilience to climate change

simple stochastic simulation approach
can help test sensitivities, e.g.
reservoir water allocations

More sophisticated stochastic
simulation models can produce
plausible distributions of conditions
under CC - interplay between pure
sensitivity studies, and including
salient climate info

Need information from a variety of
sources

Need interdisciplinary partnerships!



Ultimately, successtul climate risk management relies on:

1) the quality of the climate
2) successful integration of this infor

decision tools (such as reservol

iINnformati
mation

r mode

lon:;
INto relevant
S); and

3) incorporation of the information into decision making,
including relevant policies, regulations, and other
Institutional processes.




Make your own seasonal forecasts of reservoir inflow, manage water
allocations, and explore climate change sensitivities!

Managing Climate Risk
in Water Supply Systems

Materials and tools designed to empower technical professionals™ "
to better understand key issues
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