
Approaches for deriving future climate information

Andrew W. Robertson
International Research Institute for Climate and Society (IRI)
The Earth Institute, Columbia University, NY

Training Institute on Adaptive Management of Water Resources under Climate Change in Vulnerable River Basins
 La Serena, Chile, 8-17 October, 2012



Preface: Climate Risk Management



Preface: Climate Risk Management

• Address specific climate risks 
in sectoral decisions 
(agriculture, health, water, etc)



Preface: Climate Risk Management

• Address specific climate risks 
in sectoral decisions 
(agriculture, health, water, etc)

• Better management of current 
climate variability can help build 
resiliency to climate change



Preface: Climate Risk Management

• Address specific climate risks 
in sectoral decisions 
(agriculture, health, water, etc)

• Better management of current 
climate variability can help build 
resiliency to climate change

• Capitalize on good climate 
conditions as well as reduce 
vulnerability to negative 
impacts



Preface: Climate Risk Management

• Address specific climate risks 
in sectoral decisions 
(agriculture, health, water, etc)

• Better management of current 
climate variability can help build 
resiliency to climate change

• Capitalize on good climate 
conditions as well as reduce 
vulnerability to negative 
impacts



Options

84 MANAGING CLIMATE RISK IN WATER SUPPLY SYSTEMS

making at the appropriate time scale to inform options most e!ectively.  
Projections of long-term climate change may have little value at the 
operational level for current practices.  However, such projections might 
inform planning decisions as well as the framework under which opera-
tional decisions are made in the future (i.e., whether expected climate 
changes will necessitate more "exible operational policies). 

Assess possible trade-offs

Limited human, #nancial and natural resources lead to trade-o!s in 
almost all decisions in water resources management.  Water managers 
must seek to understand and assess possible bene#ts or consequences 
of their decisions within the context of these resource constraints.  
Uncertainty makes such assessment even more di$cult, but can also 
increase the importance of decision outcomes.  For example, hedging 
against a possible drought by maintaining high reservoir storage levels 
might result in increased "ood risks.  At the other end of the spectrum, 
managing to avoid "oods can increase the possibility of water shortages.  
%ere is also often a trade-o! between increasing expected reliability for a 
system and increasing possible bene#ts from water allocation.  Improved 
climate information and projections of likely futures may help shift the 
reliability scenarios.  While this does not eliminate the necessity for 
trade-o!s, it can improve the long-term frequency  of achieving positive 
outcomes.  Integrating thresholds of “acceptable” costs into decision 
making can help water managers balance trade-o!s.  You can explore this 
concept in Exercise 3.

Figure 5.5 
Establishing a portfolio 
of options in climate risk 
management. 
Given the normal distribution 
(bell curve) of possible out-
comes shown in Figures 5.1 and 
5.2, this figure demonstrates 
that different management or 
policy options are often de-
signed (or only able) to address 
a certain subset of outcomes.  
Each option represents a dif-
ferent approach to managing 
risks and opportunities, and the 
figure demonstrates the trade-
offs associated with each.  For 
example, ‘Option 1’ focuses on 
the possible hardship or crisis 
outcomes, perhaps ensuring 
that the system experiences the 
equivalent of baseline condi-
tions (white space represent-
ing outcomes that are neither 
harms nor benefits) even if the 
outcomes are below the Risk 
Threshold (see Figure 5.1).  
‘Option 2’ is intended only to 
take advantage of possible 
benefits (e.g., a policy that only 
addresses reservoir releases 
for hydropower, but does not 
account for drought or flood 
conditions).  ‘Option 3’ covers 
average outcomes and those 
that result in baseline condi-
tions, while also addressing 
some range of both possible 
negative outcomes and pos-
sible benefits. 
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for example, a 
drought-tolerant 
seed variety may 
not be as high-

yielding as a 
normal one, given 
sufficient rainfall
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3. What are the sources of uncertainty?
4. What are the options for using the information for adaptive management of 

water resources? – Managing climate risks across timescales
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 3-D Dynamical Models 
(General Circulation Models)

  Atmosphere (including land 
surface) (AGCM)
 Ocean (sometimes including 
sea ice) (OGCM)
 Coupled Atmosphere-Ocean 
(CGCM, AOGCM)

Uses:
• Simulations: 3-dimensional circulation of the atmosphere and/or ocean
• Experiments: Can modify any aspect of the Earth or climate system or its forcing
and examine the response
• Forecasting

* Weather forecasts
* Seasonal-to-interannual forecasts
* Climate change projections

…

29 Sep 2011 EECS W4400x
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GCM Evolution

 Development of 
climate models 
over the last 25 
years, showing 
how the different 
components are 
first developed 
separately and 
later coupled into 
comprehensive 
climate models 

Source: http://www.bom.gov.au/info/climate/change/gallery

29 Sep 2011 EECS W4400x



2. What do the models say for South America?

895

Chapter 11 Regional Climate Projections

does not change, Knutson and Tuleya (2004) estimate nearly a 
20% increase in average precipitation rate within 100 km of the 
storm centre at the time of atmospheric carbon dioxide (CO2) 
doubling. 

For South America, the multi-model mean precipitation 
response (Figure 11.15) indicates marked regional variations. 
The annual mean precipitation is projected to decrease over 
northern South America near the Caribbean coasts, as well as 
over large parts of northern Brazil, Chile and Patagonia, while 
it is projected to increase in Colombia, Ecuador and Peru, 
around the equator and in south-eastern South America. The 
seasonal cycle modulates this mean change, especially over 
the Amazon Basin where monsoon precipitation increases in 
DJF	
�    and	
�    decreases	
�    in	
�    JJA.	
�    In	
�    other	
�    regions	
�    (e.g.,	
�    Pacific	
�    coasts	
�    
of northern South America, a region centered over Uruguay, 
Patagonia) the sign of the response is preserved throughout the 
seasonal cycle. 

century is –9% under the A1B scenario, and half of the models 
project area mean changes from –16 to –5%, although the 
full range of the projections extends from –48 to 9%. Median 
changes in area mean precipitation in Amazonia and southern 
South America are small and the variation between the models 
is also more modest than in Central America, but the area means 
hide marked regional differences (Table 11.1, Figure 11.15). 

Area mean precipitation in Central America decreases in 
most models in all seasons. It is only in some parts of north-
eastern	
�    Mexico	
�    and	
�    over	
�     the	
�    eastern	
�    Pacific,	
�    where	
�     the	
�     ITCZ	
�    
forms during JJA, that increases in summer precipitation are 
projected	
�     (Figure	
�     11.15).	
�    However,	
�     since	
�     tropical	
�     storms	
�     can	
�    
contribute	
�    a	
�    significant	
�    fraction	
�    of	
�    the	
�    rainfall	
�    in	
�    the	
�    hurricane	
�    
season	
�    in	
�    this	
�    region,	
�    these	
�    conclusions	
�    might	
�    be	
�    modified	
�    by	
�    
the possibility of increased rainfall in storms not well captured 
by these global models. In particular, if the number of storms 

Figure 11.15. Temperature and precipitation changes over Central and South America from the MMD-A1B simulations. Top row: Annual mean, DJF and JJA temperature 
change between 1980 to 1999 and 2080 to 2099, averaged over 21 models. Middle row: same as top, but for fractional change in precipitation. Bottom row: number of models 
out of 21 that project increases in precipitation.

IPCC, AR4, WG1
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How best to 
present 
projections of
future climate?

Ensemble mean?
What about
uncertainty?
Are all the 
models equally
good?

# models with
a given answer?
Do models span
range of 
possibilities?

IPCC, AR4, WG1
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PROJECTIONS OF SURFACE TEMPERATURES

• Sea ice is projected to shrink in both the Arctic and 
Antarctic under all SRES scenarios. In some projections, 
arctic late-summer sea ice disappears almost entirely 
by the latter part of the 21st century.  {10.3} 

• It is very likely that hot extremes, heat waves and heavy 
precipitation events will continue to become more 
frequent.  {10.3}

• Based on a range of models, it is likely that future 
tropical cyclones (typhoons and hurricanes) will 
become more intense, with larger peak wind speeds 
and more heavy precipitation associated with ongoing 
increases of tropical sea surface temperatures. There is 
less	
�    confidence	
�     in	
�    projections	
�    of	
�    a	
�    global	
�    decrease	
�     in	
�    
numbers of tropical cyclones. The apparent increase 
in the proportion of very intense storms since 1970 in 
some regions is much larger than simulated by current 
models for that period.  {9.5, 10.3, 3.8} 

There is now higher confidence in projected patterns 
of warming and other regional-scale features, 
including changes in wind patterns, precipitation 
and some aspects of extremes and of ice.  {8.2, 8.3, 
8.4, 8.5, 9.4, 9.5, 10.3, 11.1}

• Projected warming in the 21st century shows scenario-
independent geographical patterns similar to those 
observed over the past several decades. Warming is 
expected to be greatest over land and at most high 
northern latitudes, and least over the Southern Ocean 
and parts of the North Atlantic Ocean (see Figure 
SPM.6).  {10.3} 

• Snow cover is projected to contract. Widespread 
increases in thaw depth are projected over most 
permafrost regions.  {10.3, 10.6} 

Figure SPM.6. Projected surface temperature changes for the early and late 21st century relative to the period 1980–1999. The central 
and right panels show the AOGCM multi-model average projections for the B1 (top), A1B (middle) and A2 (bottom) SRES scenarios 
averaged over the decades 2020– 2029 (centre) and 2090–2099 (right). The left panels show corresponding uncertainties as the relative 
probabilities of estimated global average warming from several different AOGCM and Earth System Model of Intermediate Complexity 
studies for the same periods. Some studies present results only for a subset of the SRES scenarios, or for various model versions. 
Therefore the difference in the number of curves shown in the left-hand panels is due only to differences in the availability of results.  
{Figures 10.8 and 10.28}

... important to interpret regional changes in the 
context of global picture
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IPCC, AR4, WG1
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Summary for Policymakers 

PROJECTED PATTERNS OF PRECIPITATION CHANGES

Figure SPM.7. Relative changes in precipitation (in percent) for the period 2090–2099, relative to 1980–1999. Values are multi-model 
averages based on the SRES A1B scenario for December to February (left) and June to August (right). White areas are where less than 
66% of the models agree in the sign of the change and stippled areas are where more than 90% of the models agree in the sign of the 
change.  {Figure 10.9}

• Extratropical storm tracks are projected to move 
poleward, with consequent changes in wind, 
precipitation and temperature patterns, continuing the 
broad pattern of observed trends over the last half-
century.  {3.6, 10.3} 

• Since the TAR, there is an improving understanding 
of projected patterns of precipitation. Increases in the 
amount of precipitation are very likely in high latitudes, 
while decreases are likely in most subtropical land 
regions (by as much as about 20% in the A1B scenario 
in 2100, see Figure SPM.7), continuing observed 
patterns in recent trends.  {3.3, 8.3, 9.5, 10.3, 11.2 to 
11.9} 

• Based on current model simulations, it is very likely that 
the meridional overturning circulation (MOC) of the 
Atlantic Ocean will slow down during the 21st century. 
The multi-model average reduction by 2100 is 25% 
(range from zero to about 50%) for SRES emission 
scenario A1B. Temperatures in the Atlantic region 
are projected to increase despite such changes due to 
the much larger warming associated with projected 
increases in greenhouse gases. It is very unlikely that 
the MOC will undergo a large abrupt transition during 
the 21st century. Longer-term changes in the MOC 
cannot	
�    be	
�    assessed	
�    with	
�    confidence.	
�    	
�    {10.3,	
�    10.7}	
�    	
�    

Anthropogenic warming and sea level rise would 
continue for centuries due to the time scales 
associated with climate processes and feedbacks, 
even if greenhouse gas concentrations were to be 
stabilised.  {10.4, 10.5, 10.7}

• Climate-carbon cycle coupling is expected to add 
carbon dioxide to the atmosphere as the climate system 
warms, but the magnitude of this feedback is uncertain. 
This increases the uncertainty in the trajectory of 
carbon dioxide emissions required to achieve a 
particular stabilisation level of atmospheric carbon 
dioxide concentration. Based on current understanding 
of climate-carbon cycle feedback, model studies 
suggest that to stabilise at 450 ppm carbon dioxide 
could require that cumulative emissions over the 21st 
century be reduced from an average of approximately 
670 [630 to 710] GtC (2460 [2310 to 2600] GtCO2) to 
approximately 490 [375 to 600] GtC (1800 [1370 to 
2200] GtCO2). Similarly, to stabilise at 1000 ppm, this 
feedback could require that cumulative emissions be 
reduced from a model average of approximately 1415 
[1340 to 1490] GtC (5190 [4910 to 5460] GtCO2) to 
approximately 1100 [980 to 1250] GtC (4030 [3590 to 
4580] GtCO2).  {7.3, 10.4}

IPCC, AR4, WG1



3. Sources of uncertainty



There is uncertainty in IPCC model projections.

• Emission scenarios
• Model formulation
• Internal variability

are all sources of uncertainty.

Uncertainty can vary in character depending
on variable considered, and on spatial/temporal
scales considered. 
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Trust in Models (Outline & Main Points

1) Models are based on physical laws (conservation of 
momentum, energy, etc.)

2) Models can simulate the current climate (mostly)
 - Temperatures, precipitation patterns, heat transports

3) Models can produce features of past climates & climate 
changes (mostly)

 - faster increases in night T than day T
 - accelerated Arctic warming
 - Post-volcano cooling

è Assuming we do trust the models (kinda) how best to use 
the information? What specificity of
information can we expect on seasonal to centennial 
timescales?
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Current Climate
Surface temperature (contours)
Error in multi-model mean
temperature (shading)

Typical magnitude of error
in individual model
(i.e. RMSE across models)
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Current Climate
Observed 
Precipitation

Multi-Model
Average
Precipitation
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Reproducing the Past

Correlation-type measure perhaps less informative here than
the result that global temperature increases (particularly in the
past few decades) if anthropogenic forcings are included.
Notice also the clear episodic cooling response due to 
large volcanic eruptions.



On average, the global models can capture the 
main features of climatological patterns of 
temperature and precipitation

but ...



Trends in annual means over 1951–1999
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Fig. 1 Trends of annual-mean surface air temperature (left) and precipitation (right) over 1951-
1999 derived from (a) observations, (b) multi-model ensemble-mean coupled climate model 
simulations, and (c) multi-model ensemble-mean uncoupled atmospheric model simulations with 
prescribed observed time varying SSTs. Annual averages are over July to June. All simulation 
and observational data were interpolated to a common ~ 2.8°!2.8° latitude-longitude grid and 
then truncated to total spherical wavenumber 12 to emphasize subcontinental-scale features 
(Sardeshmukh and Hoskins 1984). 

Shin & Sardeshmukh (2010, 
Climate Dynamics)



Why the disagreement?



Why the disagreement?
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Fig. 3 Trends of annual-mean tropical (30°S-30°N) SSTs over 1951-1999 derived from (a) 
observations and (b) the multi-model ensemble-mean of the coupled simulations. All simulation 
and observational data were interpolated to a common ~ 2.8°!2.8° latitude-longitude grid and 
then truncated to total spherical wave number 21 to focus on the comparisons of larger scale 
features (Sardeshmukh and Hoskins 1984). 

Shin & Sardeshmukh (2010, 
Climate Dynamics)

Trends in tropical sea surface temperatures



These mis-represented interdecadal trends are 
particularly an issue for “near term” climate change 
until 2050. They are less problematic as the signal 
of the forcing comes to dominate at end-of-
century.



Decadal forecasts – Can we predict this low-
frequency ocean evolution?



Decadal prediction skill over land: Yet to be demonstrated

• The forecast “target” here is precipitation averaged over the period 2-5 years ahead. Statistics 
are computed over 40 forecasts that were produced using a sophisticated modeling and 
prediction scheme that targets the decadal scale.

• Two metrics for forecast skill are shown (top and bottom rows). Third and fourth columns show 
skill improvement (if any) resulting from ocean initialization.

• Conclusion: Little if any skill evident in terrestrial Africa, including the Western Cape.

r

RMSE



4. What are the options for using the information 
for adaptive management of water resources?

Managing climate risks across timescales



 Timescales of Variability in Observations

Temperature

25%

13%

62%

Precipitation

1%

25%

74%

e.g. Climate Variability & Change in CO



http://iridl.ldeo.columbia.edu/maproom/.Global/.Time_Scales/

http://iridl.ldeo.columbia.edu/maproom/.Global/.Time_Scales/
http://iridl.ldeo.columbia.edu/maproom/.Global/.Time_Scales/




• interannual variability has largest amplitude at local scales!
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• much is understood about interannual variability driven by ENSO 



• interannual variability has largest amplitude at local scales!
• much is understood about interannual variability driven by ENSO 
• interdecadal variability is much more poorly understood



Seasonal probabilistic 
forecasts



Seasonal probabilistic 
forecasts



 Data:

Below|    Near   |                 
Below|    Near   |      Above          à
Below|    Near   |

0  10  20  30  40  50  60  70  80  90 100 110 120 130 140 150 160 170 180 190 200 
|  || ||| ||||.| || |  | ||  | |  | . |  | | |   |     |   |  |    |          |

Rainfall Amount (mm)
(30 years of historical data for a particular location & season)

(Presently, we use 1970-2000)

 33%            33%                33%Probability:

TERCILE CATEGORIES



What Seasonal Forecasts Represent

Shifts in 
the odds



Philippines example of using seasonal climate 
forecasts in reservoir management



How can climate science knowledge and models 
help inform adaptation planning?

Example:
the Angat 
reservoir in the 
Philippines 

Figure 1: (a) Location of the 76 stations with shadings representing altitude 500–1000m

(light gray), 1000–2000m (medium gray) and > 2000m (black). The colors refer to the

modified Coronas climate classification of the Philippines Type 1 (re), 2 (blue), 3 (yellow),

and 4 (green). (b) Regional Climate Model (RegCM3) 25-km orography (m). The box

indicates the single GCM land gridpoint.
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Integrating Forecasts for Reservoir 
Management: Angat, Philippines

Project objectives:
•Understand Angat reservoir decision 
process and appropriate entry points for 
improved climate information
•Work with PAGASA to develop downscaled 
forecasts of inflow
•Integrate inflow forecasts into existing 
reservoir model to manage competing water 
use

Angat Reservoir, Bulacan Province. Photo: PAGASA. 



Angat Reservoir:
Key Collaborators

Project Partners

•National Water Resources Board

•PAGASA

•University of the Philippines Los Banos

Extensive consultation with water users, 
including:

•National Irrigation Administration (national 
and provincial levels)

•Metropolitan Waterworks and Sewerage 
System (+2 concessionaires)

•National Power Corporation

Support from:

USAID, NOAA, Columbia University
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• Allocations of water are made after the rainy season (when reservoir peaks) 
for the coming year, to municipal and agricultural users

• Water level in reservoir is managed to keep within upper and lower rule 
curves

• If the water level drops below the lower rule curve, the promised allocation 
cannot be kept, and there is failure of supply

• The probability of being able to deliver is the reliability of supply
• A target reliability might be 90%

Climate risk management in reservoir operation 
context (simplified)
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1. Reservoirs operated without forecasts in 
risk averse mode

Anticipating drought of record in every year 
2. Forecasts provide enhanced estimate of 

drought risk 
Identifying opportunities in years when 
drought risk is low

3. Decision Support System communicates 
forecast in relevant terms

Reservoir levels, reliability, water deliveries
4. Risks of forecast use must also be 

managed

Reservoir management in Philippines
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In many cases, despite their added complexity, GCM-based approaches 
do not provide much more skillful seasonal forecasts than those derived 
from purely statistical methods.  Furthermore, since GCMs cover the 
entire globe, their resolution (grid size) is often too coarse to be useful for 
climate forecasts for many watershed scales.  To address these limitations, 
forecasters may nest a high-resolution regional climate models (RCM) 
within a GCM over the area of interest.  !is approach can resolve 
more local detail, including topography and land surface processes. !is 
technique is called “dynamical downscaling”.  Another approach is to 
use “statistical downscaling”, which involves the application of statistical 
methods (e.g., linear regression) to relate GCM outputs to weather 
observations at a smaller scale.  !ese techniques are very helpful for 
translating the output from GCMs into information that can be used 
to develop forecasts for a speci"c reservoir or water system.  Figure 4.10 
illustrates possible methods for translating GCM-based dynamical model 
outputs to stream#ow forecast.   

Figure 4.10 
Illustration of possible 
combinations of dynami-
cal and statistical 
techniques that result in 
using SST to develop a 
streamflow forecast. The 
GCM forecast input can come 
from a single model or multiple 
GCMs. 
 

Source: Adapted from Block 
et al. (2009) 

Similar to the statistical forecast methods described above, dynamical 
model forecasts can be calibrated and re"ned using statistical methods 
to provide information that is relevant speci"cally for water resources 
management.  For example, Block et al. (2009) developed multi-model 
ensemble stream#ow forecasts for a system in Northeast Brazil.  !ey 
used regional models to downscale GCM precipitation hindcasts, and 
then fed the results into hydrological models.  !e researchers found that 
this technique o$ers increased skill over other approaches and provides 
#exibility for improvements at many stages.  It is critical to note that 
experience has shown that enabling real bene"ts for managing water 
systems requires that such “tailoring” of forecasts be designed in close 
collaboration between water resources professionals and climate scientists.

How to translate (or “tailor”) climate forecasts to the 
needs of reservoir managers?
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ŷ = Ax + b
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Based on this information, we can also generate probabilistic 
distributions of in!ows for the October-December period 
(Figure 5.7).

At this stage in the analysis, these probability distributions are 
viewed as indicating that there can be systematic !uctuations 
in in!ows. As part of the risk assessment, the sensitivity of the 
system to such !uctuations can be investigated, contributing 
to overall information on the vulnerability of the system 
to climate !uctuations (see sub-section 2 of this chapter).  
Figures 5.6 and 5.7 can also be used as a simpli"ed forecasting 
tool if the phase of ENSO is known, as described in Step 2 
below.  Although not described here, it would also be impor-

Figure 5.6 
Partitioning approach for 
identifying relationships.  
Shown are the ranges of 
historical OND Angat Reservoir 
inflows corresponding to three 
categories of ENSO condi-
tions during the preceding 
July-August-September. The 
horizontal bar shows the mean 
inflow, while the length of the 
vertical bars represents the full 
range of inflow values. Note the 
significant difference between 
inflows during El Niño and 
La Niña events and the very 
limited overlap.
Source: SST data from NOAA 

NCDC ERSST v.2 (Smith and 

Reynolds, 2004); Angat inflow data 

from Philippines National Power 

Corporation

Figure 5.7 
Probabilistic three-month 
(October-November-
December) inflow dis-
tribution for the Angat 
Reservoir based on mean 
inflow across all years, in 
El Niño years, and in La 
Niña years. 
Each distribution is constructed 
using the mean across appro-
priate years and the standard 
deviation for the entire histori-
cal period. Although there is 
overlap, the El Niño conditions 
result in reduced average pre-
cipitation and inflow, while La 
Niña conditions result in higher 
average inflows. 
 
Source: SST data from NOAA 

NCDC ERSST v.2 (Smith and 

Reynolds, 2004); Angat inflow data 

from Philippines National Power 

Corporation
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A stochastic simulation approach

• Concept: 
‣ given the large uncertainty of climate change projections, one approach is 

to test the sensitivity of water-allocation reliability to synthetic scenarios of 
inflow to the reservoir, based on the statistics of historical data and some 
possible scenarios

• The inflow model:
‣ A first-order auto-regressive model

‣ Superimpose linear trends c=c(t)
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Figure 5.9 (b) 
Projected inflow traces 
with no systematically im-
posed long-term trend, 
but with a randomly 
imposed multidecadal 
variability (imposed lag 
1 autocorrelation, r=0.8).
Traces sampled from 100 simu-
lations by selecting every 10th 
trace after ranking by slope of 
trace trendline (derived using 
ordinary least squares regres-
sion). Includes trendlines for 
inflow traces with 10th highest 
(15.7mcm/year increase) and 
10th lowest (16.4mcm/year 
decrease) slope.
 
Source: Simulated traces from IRI; 

Angat inflow and storage level 

data from Philippines National 

Power Corporation

Figure 5.9 (a) 
Projected inflow traces 
with a long-term trend 
of -20%, interannual 
variability consistent with 
the historical record, and 
no systematically im-
posed multidecadal vari-
ability. Traces sampled from 
100 simulations by selecting 
every 10th trace after ranking 
by average inflow.  Includes 
trendline average for all inflow 
traces (4.2mcm/year decrease)  
 
Source: Simulated traces from IRI; 

Angat inflow and storage level 

data from Philippines National 

Power Corporation

Simulated flow traces:
Historical interannual variability + long-term trend



Simulated flow traces:
Interdecadal variability, NO long-term trend
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Simulated flow traces:
Interdecadal variability AND long-term trend
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Figure 5.9 (c) 
Projected inflow traces 
with a long-term trend 
of -20 and a randomly 
imposed multidecadal 
variability (imposed lag 1 
autocorrelation, r=0.8). 
Traces sampled from 100 simu-
lations by selecting every 10th 
trace after ranking by slope of 
trace trendline (derived using 
ordinary least squares regres-
sion). Includes trendlines for 
inflow traces with 10th highest 
(11.3mcm/year increase) and 
10th lowest (20.7mcm/year 
decrease) slope.
 
Source: Simulated traces from IRI; 

Angat inflow and storage level 

data from Philippines National 

Power Corporation
Figures 5.9a,b,c illustrate that over a 40-year timeframe, water resources 
managers need to be aware of the potential range of trends that can result 
from multidecadal variations in the climate system. Consultation with 
climate experts for the region of operation should inform the appropriate 
stochastic time-series model and magnitude of random variation to 
assume.  In addition to guidance on the magnitude of random multi-
decadal !uctuations to plan for, consultation can also inform whether any 
tendency for increased or reduced !ows is expected in coming decades 
(Meehl et al, 2009). 

Table 5.2 illustrates the changes in average reservoir reliability for the 
di"erent scenario types. As a graphical illustration for one of the scenario 
types (long-term downward trend of -20%), Figure 5.10  shows the 
average reliability across all 100 simulations for each year (blue curve) as 
well as the 10-year average of these average reliability values for the #rst 
and last 10-year periods (indicated by the brown lines).  



Impact of linear trend on reliability
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!e simulated long-term trend of -20% clearly results in a signi"cant 
decrease in reliability.  Assessment of the system’s sensitivity to climate 
changes in this way provides insights to vulnerability and can be an 
important input to risk assessment.  Altering the simulation management 
strategies (such as allocating less water) can reveal actions that achieve 
satisfactory outcomes in the presence of climate change.  It can therefore 
provide insight into which allocation strategies can be expected to be 
more resilient to given magnitudes of climate changes.

Inclusion of a multidecadal signal produces much less impact on the 
average reliability, because across the 100 simulations, phases of positive 
and negative in#ow will on average cancel out.  However, the inclusion 
of the multidecadal signal has other signi"cant impacts. To illustrate one 
aspect of this impact that is important for water management, we have 
developed an indicator we call the cumulative de"cit statistic. 

Figure 5.10 
Reliability based on aver-
age of 100 simulated 
projections of inflow 
traces with a long-term 
trend of -20% and no 
multidecadal variability 
(the type illustrated in 
Figure 5.9a). 
The reliability is calculated 
as the percent of simulations 
in which the reservoir level is 
above a given threshold (lower 
rule curve) at the end of March 
each year.  The solid brown 
lines indicate the average of 
the reliability values for the first 
and last 10-year period (i.e., 
2008-2017 and 2038-2047).
 
Source: Simulated traces from IRI; 

Angat inflow and storage level 

data from Philippines National 

Power Corporation
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Table 5.2  
Sensitivity metrics for 
reservoir system based 
on simulated climate 
scenarios. 
Reliability based on average 
of 100 simulated projections 
of inflow traces under various 
scenarios (with or without a 
long-term trend of +/-20% and 
with or without a multidecadal 
signal introduced by adding 
autocorrelation with a lag1 
correlation of .8).  Cumulative 
deficit statistic is the maxi-
mum cumulative shortfall for 
consecutive shortfall years (over 
the last ten years) that would be 
expected to be exceeded 10% 
of the time, where the shortfall 
(deficit) is the difference be-
tween the threshold level and 
the simulated reservoir level 
at the end of the period.  No 
shortfall is experienced if the 
reservoir level meets or exceeds 
the lower rule curve at the end 
of the period.  The reliability 
is calculated as the percent 
of simulations in which the 
reservoir level is above a given 
threshold (lower rule curve) at 
the end of the period.  Aver-
age reliability for first 10 years 
based on 2008-2017, for last 
10 years based on 2038-2047. 
The results reveal the significant 
effect of multidecadal vari-
ability on the cumulative deficit 
statistic; even when there is no 
systematically imposed long-
term trend, the existence of the 
multidecadal variability results 
in a significant increase in the 
possible cumulative deficits that 
must be planned for. 
   
Source: Simulated traces from IRI; 

Angat inflow and storage level 

data from Philippines National 

Power Corporation

Scenario Cumulative 
deficit statistic
(mcm)

Average 
reliability
first 10 years

Average
reliability
last 10 years

No trend and 
no multidecadal 
signal

59 64% 65%

Trend of +20% 
and no multi-
decadal signal

33 68% 82%

Trend of -20% 
and no multi-
decadal signal

94 65% 49%

Trend of +20% 
with multidecadal 
signal

64 70% 79%

Trend of -20% 
with multidecadal 
signal

198 65% 46%

No trend, but 
with multidecadal 
signal

145 64% 62%

!e results in Table 5.2 reveal the signi"cance of the multidecadal signal.  
Because a certain phase of a multidecadal signal might lead to dry 
conditions over several years, this will increase the likelihood of consecu-
tive shortfalls and shortfalls of greater severity.  !is will not usually be 
captured in changes in simulated average reliability, so it is important to 
develop metrics that capture such sensitivity in the system and provide a 
comprehensive risk assessment.



Toward greater realism – Incorporating IPCC 
Scenarios

Slides from Arthur Greene



A region of interest: The Western Cape, South Africa

High economic value: Agriculture, urban water (principal supply for Cape Town)
Population increase + projected rainfall decline: Collision trajectory…
Problem: How to anticipate potential climatic stresses – and their socioeconomic 
consequences.
The decadal scale becomes important for longer-range planning.



Future of the Western Cape: Lines of evidence

Annualized regional data IPCC: Climate change Observed daily variability

• To generate future climate outlooks, information from a variety of sources is 
synthesized, including climate change projections from IPCC models, the 
characteristics of observed variability and theoretical expectations.

• Salient question: Can climate models predict variations on the decadal scale?



Elements of a simulation model

Component Source Model
Climate change (trend-like) IPCC and local observations IPCC (pr) / linear regression (T)

Annual-to-decadal Regional-mean observations Vector autoregressive – VAR(1)

Subannual (seasonal to daily) Local obs, regional coherence K-NN resampling

The table describes elements of a complex simulation scheme, designed to reproduce 
important characteristics of the observed climate while also incorporating IPCC-based 
climate change information. Some important points:
•The climate change element varies among IPCC models (see plot); the distribution is 
sampled in order to generate simulations.
•The three components (table, above) are not assumed to be independent.
•Given the absence of demonstrated decadal prediction skill, a “VAR(1)” model is used to 
simulate variations on the annual-to-decadal scale. This model takes into account the 
simultaneous variations of precipitation and temperature.
•Subannual variations are resampled coherently across the domain.



Example simulations

Two simulations for the same catchment are shown, including observed values during 
1950-1999. At left the 2041-2050 decade is unusually dry; at right it is wet. The median 
precipitation trend from the IPCC distribution is used. At left, the drying due to this long-range 
trend is doubled by the decadal fluctuation; at right it is cancelled. Trend alone causes drying 
of about 10% for the 2041-2050 decade.



Incorporating IPCC Scenarios

[20] In going from the 20th to the 21st century regional
temperature and precipitation variables, as simulated in the
CMIP5 ensemble, behave quite differently, as shown in
Figure 4. Regional temperature projects consistently on the
global mean, as evidenced by the uniform slope across cen-
turies (Figure 4a). Precipitation (Figure 4b) exhibits consid-
erably greater variability, but 20th century values (from the
‘‘historical’’ simulations) do not trend significantly, while
the 21st century regression (based on the RCP4.5 experi-
ments) is significant at p ¼ 10"4. Observed regional precip-
itation also lacks any significant trend for the period of
record, 1950–1999. (To facilitate comparison with the

observational record, the 20th century values are shown
only for this period; the ‘‘historical’’ data actually extend
through 2005, the RCP4.5 simulations beginning in 2006.)
Because of this difference in behavior, the trend component
is treated differently for the temperature and precipitation
variables.

[21] Future trends are generated at the catchment level.
For maximum and minimum temperatures, this is accom-
plished by regressing the annualized catchment records on
the smoothed multimodel mean signal, as described above,
then applying the resulting coefficients to the future multi-
model mean temperature record. This enforces a consistent
relationship between 20th and 21st century behavior, with
respect to the global mean.

[22] The temperature response differs among catchments
and between Tmax and Tmin (catchment means of
0:51 6 0:22ð1!Þ and 0:62 6 0:30, respectively). Forward
projection in this manner thus implies a rather complex set
of changes in surface temperature gradients over time, while
the more rapid increase of Tmin, compared with Tmax,
leads to a mean reduction of the diurnal temperature range
(DTR). Divergent temperature tendencies could eventually
evoke compensating behaviors, such as small-scale circula-
tion adjustments that would act to reduce local gradients.
However the reduction in DTR could represent a shift to-
ward a new equilibrium state [see, e.g., Braganza et al.,
2004].

[23] Because of this complexity, and because the simula-
tions under discussion extend just a few decades into the
future, we do not attempt to include compensating mecha-
nisms for temperature trends in the simulation model. This
could be done, for example, by relaxing catchment trends
toward a common mean, insuring that local gradients do
not become unrealistically large. However there is some
spatial dependence in temperature trends, for which an
additional level of modeling would be required.

Figure 2. Method schematic: Nodes (boxes) represent signals, and edges (lines) the processes that link
them. The dashed line from Resample indicates implicit trend-subannual coupling via the k-nearest
neighbors (k-NN) scheme. Dashed lines from Output and ACRU represent processes outside the scope
of the present study.

Figure 3. The three regional time series on which simula-
tions are based. Dashed lines are the fitted trends, from
regression on the low-passed CMIP5 multimodel mean
global temperature record.
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Important Issues

• Are the relevant climate processes represented in the simulations?
• Do known modes of climate variability (ENSO, SAM, IPO) impact the region?
• How may different anthropogenic forcings play a role in the region, such as 

aerosols, stratospheric ozone?



3 Dec 2008 EESC W4400x

Dynamical Downscaling?
Example: 2 IPCC CGCMs,
both downscaled with same
regional model (RCM).



30 November 2010 EESC W4400

Tropical Pacific Trend Pattern vs 
ENSO Variability

 Source: IPCC AR4 WG1, Chp 10
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• In the near-term (e.g. til 2050), decadal 
variability may be large and not 
represented in IPCC models

• developing methods to manage 
today’s year-to-year variability can 
help build resilience to climate change

• simple stochastic simulation approach 
can help test sensitivities, e.g. 
reservoir water allocations

• More sophisticated stochastic 
simulation models can produce 
plausible distributions of conditions 
under CC – interplay between pure 
sensitivity studies, and including 
salient climate info

• Need information from a variety of 
sources

• Need interdisciplinary partnerships!



Ultimately, successful climate risk management relies on:
 1) the quality of the climate information; 

2) successful integration of this information into relevant 
decision tools (such as reservoir models); and 

3) incorporation of the information into decision making, 
including relevant policies, regulations, and other 

institutional processes.



Make your own seasonal forecasts of reservoir inflow, manage water 
allocations, and explore climate change sensitivities!

IRI TECHNICAL REPORT 10-15

The International Research Institute 
for Climate and Society

Managing Climate Risk 
in Water Supply Systems

Materials and tools designed to empower technical professionals
to better understand key issues
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