AlM Assessing the vertical structure of the
ITCZ using the Cloudsat CPR and T

TEXAS A&M

UNIVERSITY Lidia Huaman and Courtney Schumacher
Texas A&M University, Department of Atmospheric Sciences, College St
~ SPSAS Climate Change Contact: lidiana.huaman@tamu.edu
Introduction Cloudsat CPR and TRMM PR
The Intertropical Convergence Zone (ITCZ) is a zonal band of low-level 20°N g MM-PR Total _ 00N s QUSAL-CPR Tota! - g AISNANOW
wind convergence, cloudiness, and rainfall that acts as an important 15°N 15°N o
part of the ascending branch of the Hadley Circulation (Fig. 1). There Is 10°N 10°N %
debate on the vertical structure of the ITCZ In the east Pacific, 5°N 5°N & 2= &
particularly whether the profiles of latent heating and vertical velocity Fq Eq §
are top- or bottom-heavy (Fig. 2). 275 1 5%
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5:'5 A :g agree on the seasonal variability and latitudinal structure of the east 32 xu 3
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Figure 1: Mean 1998-2015 precipitation from TRMM 3B43 (shading), sea surface Th_e CPR (W'band)_ has a high sensitivity t_o Sha”OW prec:lpltat!on o 81 pd
temperature from the TRMM TMI (contours) and surface wind from CCMP (vectors). (Fig. 5a); however, it suffers strong attenuation in deep convection S 6
(Fig. 5¢). The PR (K,-band) allows good observations of stratiform & | )
Atmospheric reanalysis data for the eastern Pacfic ITCZ indicate a and deep convective rain (Figs. 5b and c), but underestimates §
bottom-heavy structure, with shallow maximum ascent driven by the shallow precipitation. We combine observations from both radars to y
meridional SST gradients (Back and Bretherton 2006), while most overcome their independent disadvantages. Our total precipitation 10
methods for estimating the vertical structure of the rate of latent corresponds to the sum of the deep convective and stratiform rain . TRMM-PR
- - - - - - - . . Figure 5: Scatterplot of shallow (a),
heating, which rely on profiles from field campaign observations In from the PR and the shallow rain from the CPR. The latent heating i aritorm (b). and deep convective
other regions combined W|th c_onvectlve/stratlfor_rn fractions from the profiles were estimated from this new total precipitation and the (c) precipitation from the CPR and
Tropical Rainfall Meassure Mission (TRMM) satellite (e.g., Schumacher look-up table in Fig. 3. PR in mm/day

et al. 2004), suggest a top-heavy structure.

Recent studies based on in-situ data show a double meridional
circulation during the fall and spring suggesting a double omega peak

Latent Heating in the east Pacific ITCZ

(Huaman and Takahashi 2016). The mean 1998-2015 latitude-pressure cross-sections of the PR-CPR latent heating (Figs. 6a-d)

suggest a bottom-heavy structure during boreal winter and spring with a peak around 800 hPa.
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11 400 hPa meridional—vertical latent heating profiles agree to varying degrees with other PR-based algorithms (Figs. 6 e-h),
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el 4 2k al. 2010; purple) structures and magnitudes during winter, spring and fall. However, during summer, Q, is distributed
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20 &N throughout the troposphere according NCEP/NCAR and ERA-Interim, while MERRAZ2 shows

maximum Q, around 400-600 hPa suggesting a top-heavy structure.
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heating in the ITCZ region from TRMM-based algorithms (e-h). Q, profiles in the ITCZ regions from reanalyses (J-).
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