SPSAS Climate Change

EFFECTS OF BIOCHAR GRANULOMETRY THE ON EMISSIONS OF GREENHOUSE GASES

SARA DE JESUS DUARTE¹, TATIANA F. RITTL² CARLOS E. P. CERRI³

¹ Agricultural Engineer, Master in soil and plant nutrition, ESALQ-USP, saraduarte@usp.br ²Environmental scientist, PhD, IMK-IFU, tatarittl@gmail.com, ³Professor PhD in soil and plant nutrition, ESALQ-USP,cepcerri@usp.br

INTRODUCTION

Biochar addition had a greater effect on N₂O emission of sandy soil than clay soil. N₂O emissions varied among the treatments in the sandy soil. N₂O emission increased with the reduction of the biochar particle size. The smallest particle size (<0.149 mm) promoted an increase 0f 2.5 times more on N_2O emission than the biggest particle size of the biochar (> 2) mm) particle (Figure 2).

The group has been working with the effects of biochar addtion on soil properties and GHG emissions under field and laboratory conditions.

Biochar is the carbon-rich product of biomass carbonization. Among the biomass used to produce biochar the most common are wood, manure or crop residues.

This study aimed to analyze biochar grain size effect on greenhouse gases emission.

MATERIALS AND METHODS

Miscanthus pyrolyzed at 450°C.

Miscanthus biochar of different sizes were mixed with sandy and soils clay and incubated at 20°C for 60 days.

RESULTS

Biochar addition did not have an effect on CH_{4} emissions, while increased the CO_2 and N_2O emissions in both soils. Clay soil presented the highest CO₂ emissions. However, the size of biochar did not affect the CO_2 emission.

Figure 2. Total N₂o-N efflux from 60-day laboratory incubations of sand and clay soil amended with different particle sizes of *Miscanthus* biochar. Vertical bars are standard deviations of means (*n*=4).

CONCLUSIONS

(i) Biochar addition did not promote change in CH_4 emissions; (ii) Biochar addition increased CO_2 emissions in both soils; (iii) Particle size of biochar had a effect on N₂O emission in the sandy soil;

(iv) The smallest particle size (<0.149 mm) of biochar showed the highest N_2O emission in the sandy soil.

ACKNOWLEDGEMENTS

Figure 1. Total CO₂-C efflux from 60-day laboratory incubations of sand and clay soil amended with different particle sizes of *Miscanthus* biochar Vertical bars are standard deviations of means (*n*=4).

This work study supported by grant from the National Council for the Improvement of Higher Education (CAPES) and Foundation for Research Support of São Paulo state (2015/10108-9).

REFERENCES

Chen, J., Li, S., Lianf, C., Xu, Q., Li, Y., Quin, H., Jeddry, J., Fuhrmann.2017. Response of microbial community structure and function to short-term biochar amendment in an intensively managed bamboo (*Phyllostachys praecox*) plantation soil: Effect of particle size and addition rate. Science of The Total Environment 574, 24-33.