Reallocation of Río San Juan Water by Monterrey City, Mexico

Implications for Agriculture and Basin Water Sharing

Christopher A. Scott

School of Geography & Development, and Udall Center for Studies in Public Policy University of Arizona

Scarcity: Conflict or Cooperation?

- Urban growth accelerating in regions with over-allocated water resources
- Existing use--generally agriculture--has connotations of being residual (Molle):
 - " "low value/ productivity"
 - "lion's share"
- Environmental water use declines

Integrated River Basin Management

- Is IRBM (an IWRM stepchild) a viable, appropriate decision-making domain?
 - Spatially defined, hydrologically delineated
- The river basin offers only partial explanatory value, management promise
 - Inter-basin transfer
 - □ Return flows to agriculture, also may be inter-basin
 - □ The result is the "human water cycle"

The Human Water Cycle: Rural-Urban-Rural Water Loop

- Transfer of water from agriculture to cities
 - □ Move conflict to cooperation negotiated settlements
 - □ Water rights, property regime, economic issues
- Urban use, enhanced quality of life
 - Urban amenity value of water
 - Millennium Development Goals in LDCs
- Agricultural end use of wastewater/ effluent
 - □ Re-tool agriculture to adapt to water quality and timing
 - □ Public health risk (consumers and producers)

Human Water Cycle Typology

Rural source	Urban use	Rural return, use
Production irrigated ag.	Multiple (w/ urban sprawl on ag.). Wastewater	Wastewater mixed source for informal urban & peri- urban agriculture
Small-scale "rural" water	Multiple use.	Wastewater primary source for production irrigated agriculture
Production irrigated agriculture	Multiple use.	Same ag. users as source water (i.e., water swap with treatment). e.g. Monterrey, Mex. – Bajo Rio San Juan

Context - Sobering Demographics

 880 million additional population by 2015, virtually all in developing countries.

 After 2015, all worldwide growth in population will take place in developing country cities.

Urban Water Supply Growth

Bajo Río San Juan-Monterrey Transfer

El Cuchillo

Constructed in 1993

Supplies 5 m³/s to Monterrey (to be increased to Marte R. Gomez vs. El Cuchillo Reservoir Storage (1993-2004) 700 $10 \text{ m}^3/\text{s}$) 600 y = 0.5015x + 31.7MR Gómez 500 Marte R. Gomez (MCM) 400 reservoir 300 impacts 200 100 0 200 400 1000 0 600 800 1200 El Cuchillo (MCM)

Negotiated Settlement

- 9 Oct. 1989 Monterrey, federal and Nuevo León governments agree to finance and construct El Cuchillo dam
- 6 Sept. 1990 Tamaulipas, federal and Nuevo León governments agree to "rationalize" water use, preserve multiple uses of BRSJ irrigation water
 Meet treaty obligations with the U.S.

Effluent – the Bargaining Chip

- Federal CNA allocates 189 MCM of effluent from Monterrey to BRSJ irrigators
- Nuevo León assumes responsibility and cost of treatment in compliance with federal standards
- Relocation of downstream Tamaulipas urban water demand from BRSJ irrigation canal

BRSJ - Variable Capacity to Adapt, eg., Irrigation Water Productivity

Year	Total Production	Total Gross	Total Net	Gross Water	Net Water
		Volume Used	Volume Used	Productivity	Productivity
	(Ton)	(Thousand m ³)	(Thousand m ³)	(Ton/Thousand m ³)	(Ton/Thousand m ³)
95-96	202,131.86	263,331.00	146,743.00	0.77	1.38
96-97	101,029.00	146,811.00	78,927.00	0.69	1.28
97 - 98	175,891.00	222,875.00	128,059.00	0.79	1.37
98 - 99	84,614.00	114,272.00	64,089.00	0.74	1.32
99 - 00	90,555.00	110,100.00	64,201.00	0.82	1.41
00 - 01	6,609.00	160,499.00	83,283.00	0.04	0.08
01 - 02	250,578.00	383,171.00	219,372.00	0.65	1.14
02 - 03	281,786.20	395,429.90	213,457.40	0.71	1.32
03 - 04	394,543.58	217,267.50	110,089.20	1.82	3.58

Growing upstream demand and capture of wastewater; will need to pipe it 100+ km.

BRSJ Irrigation Efficiency

Treaty deliveries to the U.S. not met in all cases; significant water use tightening in San Juan (Conchos, and Bravo/Grande) basins.

Conflict to Cooperation

Urban growth, legal priority to water = increasing competition with agriculture Decision-making inevitably moves beyond the river basin (spatial domain) to organizational and political domains The human water cycle presents the threat of conflict, but also opportunities for cooperation

Policy Implications

- Need coherent legal, institutional frameworks
- Coordination of multiple government agencies
- Flexible application of the 'polluter pays' principle
- Public awareness campaigns for farmers and urban water users

Thank you.

Chris Scott cascott@email.arizona.edu

Acknowledgements:

- Francisco Flores-López (Cornell University)
- Jesús R. Gastélum (University of Arizona)
- Randy Barker (International Water Management Institute)
- Mark Giordano (IWMI)
- Francois Molle (IWMI & Institut de Recherche pour le Developpement)