

From Problem Space to Solution Space End-to-end integration

Colloquia on Knowledge Integration at the Science-Policy Interface

Patricia Romero-Lankao, Maria Manez, Maria Carmona

Two assumptions

* Romero-Lankao, Borbor-Cordova, Abrutsky, Günther, Behrentz, and Dawidowsky (2012) Environmental Science and Policy Special Issue on Integrated Assessments creating science policy interfaces (e.g., integrated water resources management)

From Problem Space to Solution Space End-to-end integration

- User-inspired interdisciplinary science, integrated assessments, etc.
 - Portfolio of management & response approaches
 - Understanding processes shaping response capacity

Integrated Understanding of Urban Vulnerability and Risk (Insights and Lessons from ADAPTE)

Colloquia on Knowledge Integration at the Science-Policy Interface

> Patricia Romero-Lankao Nov. 11, 2012

III. ADAPTE example of user-inspired research

Relatively little is known in Latin America about current urban vulnerability to temperature & air pollution

Romero Lankao, Qin and Dickinson (2012) Meta-analysis on urban vulnerability to temperature hazards (224 cities, 56 papers) ADAPTE fills the gap by applying userinspired interdisciplinary approach to explore

- 1. Effects of *exposure* to temperature and air pollution
- 2. Differences in *mortality* and *vulnerability* across and within cities
- <u>Societal</u> and <u>environmental</u> factors accounting for this differential distribution

Paty Romero-Lankao, Mercy Borbor-Cordova, Hua Qin, Sara Hughes, Jorgelina Hardoy Rosana Abrutzky, Roxana Borquez, Eduardo Behrentz, Laura Dawidowski, Olga Wilhelmi, Angélica Rosas Huerta, María Griselda Günther, Guadalupe Sierra, Gastón Urquiza, Gustavo Pandiella, Melissa Haeffner. Andrea Lampis, Diana Rocío Rodríguez Triana, Juliana Rodríguez Azcuénaga;, Macaraena Mella, Caroline Clerc

Urban vulnerability and risk, an integrated approach

Do health risks act across socioeconomic and spatial boundaries?

Risk Society Theory

Are hetalh risks "unequally" distributed along socioeconomic and spatial lines?

Political Ecology and Environmental Justice

Romero-Lankao and Qin 2011

Data

- Temperature, humidity
- Air pollution data
 - PM₁₀, O₃, NO₂
- Health impacts

South American Emissions, Megacities and Climate (SAEMC)

- Cardiovascular and respiratory mortality and morbidity (countylevel)
- Census-based socioeconomic data (municipality-level)
 - Vulnerability: income, education, availability of assets,... affecting differences in impacts
- Surveys and interviews (community-level)
 - Adaptation: groundtruthing, perceptions of risks and responses to hazards and stresses

Methods

- Exploratory Time Series Analysis
 - <u>Seasonal</u> decomposition and linear regressions (weather/pollution and health variables)
- Generalized Linear Model (GLM) with Poisson log-linear distribution
 - Changes in Relative Risk (RR) of health outcomes due to changes in temperature and air pollution
- GIS/Spatial statistics
 - Univariate linear regression models
- Socioeconomic Vulnerability Index (livelihoods approach)
- Multivariate regression analysis:
 - combined impacts of weather, air pollution and socioeconomic vulnerability
- Qualitative analysis of
 - Governmental and households actions and
 - Perception of risks and vulnerabilities/adaptive capacities

Relative Risk (%) Respiratory (Age<14) deaths

Exposure to Hazards & Impacts Health risks vary with differing weather conditions, with different implications for different impacts and hazards

Positive correlation between mortality and PM10

Negative correlation between temperature and mortality

Source: Romero-Lankao, Qin, Hughes, Borbor, Haeffner (2012)

Sensitivity, Capacity & Impact

Geographic distribution of mortality rates does not always coincide with the pattern of the socioeconomic vulnerability index

 Populations of communities with different socioeconomic vulnerability levels are at similar relative risk of mortality from exposure to PM₁₀, NO₂, Ozone

Source: Romero-Lankao, Qin and Borbor Cordova (2012)

Statistical and spatial analysis: annual concentration of pollutants is not correlated with socioeconomic vulnerability

Table 4 Results	of the	Correlation	Analysis
			~

Variables	Mexico City				Bogota			Santiago		
	Pearson's r	Spearman's rho	Spatial correlation	Pearson's r	Spearman's rho	Spatial correlation	Pearson's r	Spearman's rho	Spatial correlation	
ln (PM ₁₀) & ln (MVI)	-0.165	-0.389	-0.346	-0.347	-0.041	-0.376	0.436	0.071	0.431	
N	15	15	15	11	11	11	7	7	7	
ln (NO ₂) & ln (MVI)	0.026	0.118	0.106	0.634	0.452	0.687*	a	_		
Ν	18	18	18	8	8	8	-			
ln (ozone) & ln (MVI) N	-0.281 17	-0.256 17	-0.302 17	a	Ξ	Ξ	-0.855* 7	-0.821* 7	-0.873*** 7	
ln (cardiovascular mortality rate) & ln (MVI)	-0.435**	-0.392**	-0.559*	0.169	0.086	0.227	-0.153	-0.160	-0.297	
N	51	51	51	19	19	19	52	52	52	
ln (respiratory mortality rate) & ln (MVI)	-0.077	-0.003	-0.200	0.149	0.035	0.206	0.003	-0.020	0.108	
N	51	51	51	19	19	19	52	52	52	

^a No sufficient data for the analysis.

* = p < .05, ** = p < .01, *** = p < .001.

Source: Romero-Lankao, Qin and Borbor Cordova (2012 in review)

Perceptions and responses to risk: awareness important component of responses

Actions to cool homes in the summer in selected communities

A/C

swamp or evaporative cooler

City's latitude

•Temperature variability people are exposed to

Responses depend on

- Available assets
- •Available warning and emergency systems

Social networks

Awareness of Public Information Systems

How Respondents Receive Information about Events

Source: Romero-Lankao, Qin, Hughes, Borbor, Haeffner (2012)

Social networks (key determinant of capacity)

Buenos Aires

Discrepancy between how low and middle income communities use and relay information about emergency events

Low income communities:

knew that an official system existed, but did not know how to use it.

Instead, they relied on neighborhood networks and personal knowledge.

Middle income communities

were more dependent on official announcements

From coping to adapting

A house in San Fernando Buenos Aires, one day after a Sudestada

Because of an unstable & inadequate asset base (e.g., job loss, economic hardship) many construct below the flood line

Source: Romero Lankao, Hughes, Qin, Rosas, Borquez 2012

People in San Fernando Buenos Aires should elevate buildings enough to withstand flood forces from storm-surges (Sudestadas)

Individual access to assets and options is insufficient to respond to climate risks

Structural and institutional governmental actions are key determinants of capacity

•E.g., settlement's "regular" status

- Gives security from eviction
- Incentivizes investment in house improvements
- Is a requirement for infrastructure and service provision
- Helps avoid stigmatizations that disempower people

"There were times that services would not come in the barrio because it was a red (dangerous, insecure) zone".

ADAPTE doing user-inspired interdisciplinary science

User-inspired interdisciplinary science

* Romero-Lankao, Borbor-Cordova, Abrutsky, Günther, Behrentz, and Dawidowsky (2012) Environmental Science and Policy Special Issue on Integrated Assessments

- Common goal: research &/or policy relevant question
- Scholars with very different *mental models*
 - Shed light on diverse angles of complex question
 - Communication problems, frustration

Balance between two needs:

- Academic: bring forth new theories, methods, tools and insights
- Societal: do research from which a social benefit may be derived
- Equity of opinions between the scholars, and practitioners and communities

Opportunities and challenges of ADAPTE as example of interdisciplinary research

ADAPTE workshop with community leaders, Buenos Aires Sept. 2011

- Sub-teams around areas of expertise and cities (students were key)
- Nature and interconnections between the different dimensions of vulnerability & risk
- Differences in culture & priorities of researchers and stakeholders
- Stakeholders have multiple competing goals, assets and powers
- Shorter-term, more tangible goals take priority
- Perceived longer-term goals, such as mitigation and adaptation are often dropped or down-played

The four A approach to enhance resilience to flooding in urban areas

Djordjevic´ et al., 2011