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Abstract: Nutrient availability varies substantially across lowland tropical forests and 25 

constrains their responses to global change. However, interactions among regional, 26 

landscape, and local controls of nutrient availability are poorly understood. In that 27 

context, we explored the effects of rainfall, topography, and canopy chemistry on 28 

nitrogen (N) cycling across the Osa Peninsula (Costa Rica). We sampled soils from 29 

catenas in regions receiving 3,000 vs. 5,000 mm of rainfall per year. Within the less 30 

humid region, we sampled catenas starting on either broad stable terraces or knife-edged 31 

ridges. On the stable terraces, we sampled soils from 0.25 ha plots with either high or low 32 

mean canopy N. In all sites, we measured metrics of long- (soil δ15N) and short-term (net 33 

nitrification and mineralization, and KCl-extractable N) N availability. Mean soil δ15N 34 

was elevated in the less humid region (3.8±0.16‰ vs. 3.1±0.14‰; P=0.003). Within that 35 

region, mean δ15N was ~1‰ heavier on stable terraces (5.3±0.14‰,) than nearby knife-36 

edged ridges (4.0±0.24‰; P<0.001). Short-term N metrics did not vary with rainfall or 37 

topography (P>0.05). In contrast, short-term soil N metrics did vary under canopies with 38 

high vs. low canopy N, but soil δ15N did not. These results illustrate the role of climate 39 

and topography as dominant drivers of long-term N status on the Osa, as well as the 40 
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potential for canopy characteristics, which are likely determined by phylogeny in this 41 

system, to impose small-scale heterogeneity within those broader constraints. Overall, 42 

our work suggests the use of a hierarchical framework for understanding how diverse 43 

drivers of nutrient status interact across space and time in tropical forests. 44 

 45 

 INTRODUCTION 46 

Nutrient availability regulates many ecosystem processes in lowland tropical 47 

forests, including net primary productivity (Mirmanto and others 1999; Wright and others 48 

2011; Alvarez-Clare and others 2013), decomposition (Cleveland and others 2006), 49 

reproductive litter production (Kaspari and others 2008), and trace gas emissions (Hall 50 

and Matson 2003). Nutrient status may also influence forest responses to global change 51 

(Thornton and others 2007; Bonan and Levis 2010; Townsend and others 2011; 52 

Cleveland and others 2013; Wieder and others 2015). In the lowland tropics, a 53 

combination of empirical data and theory suggest that many forests are relatively nitrogen 54 

(N) rich but phosphorus (P) poor (Vitousek 1984; Martinelli and others 1999; Wang and 55 

others 2010; Cleveland and others 2011). However, recent work has highlighted the 56 

biogeochemical heterogeneity of these diverse ecosystems and suggested that any biome-57 

wide representation of nutrient status and/or limitation is likely an oversimplification 58 

(Townsend and others 2008; Porder and Hilley 2011). While small-scale variations in 59 

patterns and rates of many ecosystem processes point to the heterogeneity of tropical 60 

forests (Burghouts and others 1998; Dent and others 2006; Xia and others 2015), the 61 

Page 18 of 55Ecosystems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

4 

 

relative influence of the factors that contribute to that variability across the landscape is 62 

not well understood.  63 

Here, we focus on N cycling and availability, which vary widely across tropical 64 

systems. For example, many geologically-stable lowland forests cycle N in excess 65 

(Vitousek 1984; Martinelli and others 1999; Mcgroddy and others 2004). In contrast, N 66 

availability can be quite low in forests growing where rates of N loss are high, such as 67 

rapidly eroding regions or those with especially high rainfall (Houlton and others 2006, 68 

2007; Hilton and others 2013). Examples of such regions include the Central Range of 69 

Taiwan (Hilton and others 2013) and the Osa Peninsula of Costa Rica (Bern and others 70 

2005; Wieder and others 2009, 2011). Indeed recent work has highlighted the importance 71 

of N in some tropical regions. Nitrogen has been shown to limit and/or co-limit microbial 72 

respiration on the Osa (Ilstedt and Singh 2005; Cleveland and Townsend 2006) as well as 73 

reproductive litter production and sapling growth in Panama (Kaspari and others 2008; 74 

Wright and others 2011) and Indonesia (Mirmanto and others 1999; Adamek and others 75 

2009). 76 

It remains unclear, even in areas where N availability is relatively low and thus 77 

may limit important ecosystem properties, how and why N status varies across space and 78 

time. To better understand N variability in lowland tropical forests, we examined how 79 

three drivers of N cycling (rainfall, topography, and canopy chemistry) influence soil N 80 

status in tropical forest across the Osa Peninsula in southwestern Costa Rica. Work in 81 

montane tropical forests as well as global meta-analyses indicate that N availability 82 

decreases with rainfall in wet tropical forests (Schuur 2003; Houlton and others 2007; 83 
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Nardoto and others 2008; Craine and others 2009). To our knowledge, this relationship 84 

has not been explicitly tested in wet lowland tropical forests, where annual precipitation 85 

ranges widely (Malhi and Wright 2004). However, it is likely that climatic differences 86 

drive differences in N cycling in these regions as well.  87 

At the scale of watersheds, topography can drive differences in nutrient 88 

availability by setting the pace of erosion, and thus soil residence time (Jenny 1941; 89 

Vitousek 2004; Porder and Hilley 2011). These effects are most pronounced where 90 

topography creates differences in soil age. For example, in some but not all locations 91 

ridges tend to host relatively older soils than their adjacent slopes due to slower rates of 92 

erosion (Porder and others 2005, 2015). This state of geomorphic disequilibrium is 93 

common where there is rapid or recent tectonic uplift, which isolates upland areas from 94 

being eroded by river channels. Erosion-driven differences in soil age can affect both N 95 

and P (and other rock-derived nutrient) availability (Amundson and others 2003; 96 

Vitousek and others 2003; Hilton and others 2013; Weintraub and others 2015). 97 

Finally, plant-soil interactions may influence nutrient availability at small spatial 98 

scales (Dent and others 2006; Xia and others 2015). Nutrient rich soils can promote 99 

elevated foliar nutrient concentrations, lower nutrient resorption, rapid decomposition, 100 

and thus higher soil fertility (Vitousek 2004). The influence of soil nutrient availability 101 

on foliar chemistry among tree species has been observed across montane tropical forests 102 

(Hidaka and Kitayama 2011) and demonstrated experimentally within species in a 103 

lowland forest (Mayor and others 2014a, 2014b). Similarly, the influence of canopy foliar 104 

chemistry on soil is well documented, at least in temperate forests (Binkley and Giardina 105 
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1998; Lovett and others 2004; Hobbie and others 2006; Laughlin and others 2015). Such 106 

effects are more difficult to document in the hyperdiverse tropics. Perhaps as a result, 107 

some tropical forest studies report correlations between foliar chemistry and soil nutrients 108 

(Keller and others 2013), free-living N fixation (Reed and others 2008), litter 109 

decomposition rates (Wieder and others 2008), and carbon dioxide and nitrous oxide gas 110 

fluxes (Van Haren and others 2010; Waring and others 2015), while others suggest that 111 

individual trees have little to no influence in the presence of such high diversity (Powers 112 

and others 2004; John and others 2007). The high phylogenetic and functional diversity 113 

of trees in tropical forests (Townsend and others 2008; Fyllas and others 2009) makes it 114 

difficult to identify places on the forest floor that receive litterfall from a single species or 115 

group with shared functional traits. This may partially explain the lack of consensus in 116 

regards to the role of tropical trees in influencing soil nutrient status.  117 

Here, we explore the influence of mean annual precipitation (MAP), topography 118 

and canopy chemistry on N cycling in the lowland tropical forests of the Osa Peninsula, 119 

Costa Rica. We coupled high-resolution LiDAR and image spectrometry with targeted 120 

ground-based soil sampling to test the following three hypotheses. First, we hypothesized 121 

that soil N availability would be lower in the wetter region of the Peninsula. Next, we 122 

hypothesized that in sites receiving similar amounts of rainfall, N availability would be 123 

higher on broad, slowly eroding terraces with functionally older soils, than on narrow 124 

ridges and adjacent slopes with short soil residence times. Finally, in climatically and 125 

topographically similar sites, we hypothesized that soil N availability would be higher 126 
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under high N canopies than low N canopies. We explore evidence as to the direction of 127 

this relationship (plant effects on soil vs. soil effects on plants) in the discussion.   128 

METHODS AND MATERIALS 129 

Site description 130 

We tested these hypotheses in mature lowland tropical forests on the Osa 131 

Peninsula in southwestern Costa Rica. Mean annual temperature at the elevation of our 132 

sites (100-200 m above sea level) is relatively uniform across the Peninsula (~26° C), and 133 

rainfall ranges from ~3,000 mm y-1 on the southern end of the Osa up to ~5,000 mm y-1 134 

in the north (Taylor and others 2015). Two of our study sites, Piro North and Piro South, 135 

are located near the Piro Biological Station (8o24’N, 83o19’W) in the south and receive 136 

~3,000 mm MAP. Our third site, Rancho Mariposa near Drake Bay (8o43’N, 83o37’W; 137 

hereafter referred to as Drake), receives ~5,000 mm MAP (Taylor and others 2015; 138 

Figure 1). All three sites experience a pronounced dry season from December – April, 139 

with heavy rainfall common the rest of the year. The Osa has stratified, closed-canopy 140 

forests that include ~57 tree families and >400 species with an estimated 100-200 tree 141 

species ha-1 (Kappelle and others 2003).  142 

The Osa Peninsula has experienced recent tectonic uplift and the landscape is 143 

being rapidly dissected by downcutting streams (Hauff and others 2000). As in similar 144 

geomorphic settings, broad, flat, or gently sloping terraces underlie some portions of the 145 

landscape. These slowly-eroding terraces are the highest topographic points locally and 146 

are isolated from the steep slopes and rapidly incising streams on their flanks, similar to 147 

other terraces on the Pacific Coast of North and Central America (Jenny and others 1969; 148 
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White and others 2009). Such terraces are prominent in Piro South, but largely absent in 149 

Piro North and Drake (Figure 1). In the latter two sites, rapid stream incision (3.5-7 m y-
150 

1) (Hauff and others 2000) has completely dissected these terraces and brought the 151 

landscape closer to geomorphic equilibrium, where knife-edged ridges are bound on 152 

either side by steep slopes. Thus, we expect both ridges and slopes are eroding at similar 153 

rates in these sites (Figure 1).  154 

Soils on the Osa are primarily Ultisols (mostly Typic Tropohumults), however 155 

Inceptisols (Typic Humitropepts) can be found in steep areas (Perez and others 1978; 156 

Vasquez 1989). Rapid erosion provides sufficient inputs of fresh rock such that soil 157 

exchangeable strontium, and by extension nutrient cations, are provided by rock 158 

weathering rather than atmospheric deposition in both Drake (Bern and others 2005) and 159 

Piro (Osborne, Unpublished Data). Drake is underlain by basalt flows, while Piro North 160 

and South are primarily underlain by lithified andesitic and basaltic sediments (e.g. 161 

volcaniclastics) that were deposited in a shallow marine environment (Buchs and others 162 

2009). 163 

Airborne LIDAR and high fidelity imaging 164 

The Carnegie Airborne Observatory (CAO)’s Airborne Taxonomic Mapping 165 

System (AToMS) was used in February of 2012 to complete a series of remote sensing 166 

flights over the Osa Peninsula. The AToMS platform combines a high-fidelity imaging 167 

spectrometer (HiFIS) with a dual laser, waveform LiDAR scanner (Asner and others 168 

2012). Data were collected at an altitude of 2000 m above ground level at a ground speed 169 

of approximately 200 km h-1. The LiDAR was operated at a pulse repetition frequency of 170 
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50 khz. Beam divergence was set to 0.56 mrad (l/e) for each of the two lasers, providing a 171 

total of 1.12 m laser spot spacing and allowing for two laser shots per m2. To generate 172 

digital elevation models (DEM), such as those included in Figure 1, 10 m x 10 m kernels 173 

were passed over georeferenced LiDAR data points. The lowest elevation estimate in 174 

each kernel was assumed to be ground. All remaining ground points were identified by 175 

iteratively fitting a horizontal plane to each of the ground seed points and selecting the 176 

closest point < 5.5o and 1.5 m higher in elevation.  177 

The AToMS HiFIS measures spectral radiance in 5 nm increments (full-width at 178 

half-maximum), spanning the visible to shortwave infrared spectrum (380-2510 nm). The 179 

raw HiFIS data were made up of 480 contiguous channels, which were resampled to 214 180 

bands at 10 nm increments for analysis. The derived spectral radiance data were 181 

atmospherically corrected and converted to brightness-normalized reflectance to 182 

minimize the differences in observed brightness due to canopy leaf tissue orientation and 183 

depth (Feilhauer and others 2010; Asner and others 2015).  184 

The canopy N mapping data used in our study were derived using a spectral 185 

calibration originally developed in Amazonian tropical forests (Asner and others 2015), 186 

and previously applied on the Osa Peninsula, Costa Rica (Asner, Unpublished data). 187 

However, because the spectral calibration was not specific to the forests of the Osa, we 188 

have conservatively chosen to refer to the remotely sensed N values as a “canopy N 189 

metric” rather than concentration. Hereafter, we simply refer to the mapped value as 190 

“canopy N”.  In general, a data-fusion approach combining HiFIS with Partial Least 191 

Squares Regression (Haaland and Thomas 1988) and LiDAR data was used to produce 2 192 
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m resolution canopy N maps with reduced effects from illumination and viewing angle 193 

variation, crown architecture, inter- and intra- crown shading, forest gaps, and terrain-194 

related artifacts (Asner and others 2012).  195 

Experimental design, soil collection, and tree species identification  196 

We used MAP records in conjunction with DEMs generated from the LiDAR data 197 

described above to identify sites within the CAO flight lines with the desired climatic and 198 

topographic conditions. To evaluate the influence of MAP on N status we compared soils 199 

from Piro North and Drake, which differ in MAP (~3,000 vs. ~5,000 mm MAP, 200 

respectively) but have similar topography. Both sites are dominated by knife-edged 201 

ridges in geomorphic equilibrium with their adjacent slopes (Figure 1). To measure the 202 

effects of topography on N status we compared soils in Piro North and Piro South, which 203 

have similar MAP (~3,000 mm y-1) but different geomorphology.  204 

In each site, we sampled four catenas (ridge, shoulder, mid slope, and low slope 205 

transects). All of the catenas start on either a broad flat ridge (Piro South) or a narrow 206 

knife-edge ridge (Piro North and Drake), and end on a low portion of the slope 207 

(floodplains are absent from these first order valleys; Figure 1). At each slope position 208 

(ridge, shoulder, mid slope, and low slope), we used a hand auger to extract five 0-10 cm 209 

samples of mineral soil located roughly every 5 m along a contour line (e.g. at constant 210 

elevation). These five subsamples were homogenized for a single slope position on a 211 

given catena prior to analysis. Soils in the Osa typically have minimal O horizons, during 212 

the dry season litter builds up directly on the mineral soil and in the wet season the 213 

mineral soil is immediately beneath a thin layer of decomposing litter.  214 
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We sampled soils during both the wet (July 2014) and dry (January 2014, 215 

February 2015) seasons. We focus on wet season data here because we sampled all of the 216 

sites during the July 2014 campaign, while dry season data for Piro North and Drake 217 

were collected during a different dry season and year than Piro South. Data from the dry 218 

season are in included Supplementary Figure 1. We did not expect soil δ15N to vary 219 

seasonally, so for this metric we analyzed soils collected in both seasons and averaged 220 

our results 221 

In order to explore the influence of canopy chemistry on soil N, we used HiFIS to 222 

identify circular 0.25 ha plots with either high or low canopy N, which we defined as 223 

having > or < 0.5 standard deviation of the regional mean canopy N (Figure 2; Table 2). 224 

Regional mean canopy N was calculated using all of the data collected along a flightline 225 

with a total area of over 56 km2. In an effort to hold all other drivers as constant as 226 

possible, we selected high and low canopy N plots within 1 km2 of one another on the 227 

same broad flat terrace in Piro South (Figure 1). After preprocessing of the canopy N 228 

dataset to remove poorly illuminated and/or non-canopy structures, the number of pixels 229 

in the 0.25 ha plots ranged from 218 (0.09 ha) and 443 (0.18 ha; Table 2). On average, 230 

canopy N in the high N plots was two standard deviations above the regional mean, while 231 

low N plots averaged 0.6 standard deviations below the regional mean. Overall, canopy N 232 

values in these plots spanned almost the entire range of canopy N that has been observed 233 

among tropical forest ecosystems (Balzotti and others, unpubl. data; Asner and others 234 

2014). We collected three soil samples (0-10 cm) from the inner 10 m of each circular 235 

plot using a hand auger in February, May, and August of 2015. 236 
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To compare canopy tree species composition between the high and low N plots, 237 

we identified trees with ≥ 40 cm diameter at breast height (DBH). This DBH cut-off has 238 

previously been identified as the inflection point of a height-to-diameter curve of trees on 239 

the peninsula, suggesting that trees of this size are likely to be canopy emergents and thus 240 

visible to our airborne sensors (Taylor and others 2015). In addition, we carried out field 241 

surveys to ascertain which trees in our plots were canopy emergents and found that the 40 242 

cm DBH cutoff was representative. The plots contained an average of 14 individuals with 243 

≥ 40 cm DBH, and included 40 different species 244 

Soil analyses 245 

We measured pH in 1:2 soil/deionized water solutions using an InLab 413 glass electrode 246 

(Mettler Toledo, Schwerzenbach, Switzerland). Within three hours of collection, we 247 

extracted NO3
- and NH4

+ by shaking 8 g of field moist soil in 30 mL of 2M KCl for one 248 

minute every hour for four hours (Weintraub and others 2015). After four hours, extracts 249 

were filtered through Whatman glass microfiber filters and stored frozen until analysis. 250 

We stored a second soil aliquot at field temperature in the dark for five days and then 251 

extracted with 2M KCl as described above (Weintraub and others 2015). We analyzed 252 

NO3
- and NH4

+ on a Westco Smartchem 200 discrete element analyzer (Brookfield, CT, 253 

USA). We calculated net nitrification and N mineralization as the difference between 254 

extractable NO3
- and total inorganic N concentrations from the completion of the five-day 255 

incubation and our initial extraction in the field. We measured bulk soil C, N, and δ15N 256 

on air dried, ground soils using a Europa 20-20 continuous-flow isotope ratio mass 257 

spectrometer interfaced with a Europa ANCA-SL elemental analyzer (Sercon Ltd., 258 
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Cheshire, UK) at the Marine Biological Station Stable Isotope Laboratory (Woods Hole, 259 

Massachusetts). We report all concentrations on a soil dry mass basis (105°C for 48 260 

hours).  261 

Statistical analyses 262 

We log transformed all data that did not fit the assumptions of normality. To 263 

understand the influence of rainfall and slope position, we compared soil N availability in 264 

geomorphically similar sites with high MAP (~5,000 mm, Drake) and low MAP (~3,000 265 

mm, Piro North) (Figure 1) using a two-way ANOVA with rainfall and slope position as 266 

fixed variables. We then tested the influence of slope position (ridge, shoulder, mid slope, 267 

and low slope) on soil N using one-way ANOVAs and Tukey’s HSD test separately in 268 

each site (Piro South, Piro North, and Drake). To determine the effects of soil residence 269 

time we used a t-test to compare N cycling metrics between the ridges of Piro South 270 

(broad, flat terrace) and Piro North (knife-edge ridges; Figure 1). We also used a t-test to 271 

examine differences in soil N status between the high and low canopy N plots using one-272 

way ANOVA. The analyses described above were all performed using SAS JMP Pro 273 

software version 11.2.0 (SAS Institute Inc., Cary, North Carolina) and results are 274 

reported as means ± standard error. We compared tree species composition in the canopy 275 

N plots using nonmetric multidimensional scaling (NMDS). Using the function 276 

‘metaMDS’ in the R package vegan (Oksanen and others 2016), we generated an 277 

ordination plot representing each site based on the total basal area of species with 278 

individuals of ≥ 40 cm DBH. Data was square root transformed and Bray-Curtis distances 279 

were used to create a dissimilarity matrix. The function then used multiple starting 280 
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configurations to identify a stable solution, which was ultimately configured to maximize 281 

variability along the first NMDS axis.  282 

RESULTS  283 

Rainfall and topographic effects on soil N status  284 

Soil δ15N was lower on Drake catenas (5,000 mm MAP; 3.1±0.14‰) than in the 285 

less humid Piro North sites (3,000 mm MAP; 3.8±0.16‰; N=4; P=0.003; Table 1). In 286 

both Drake and Piro North, catenas start on knife-edged ridges rather than flat terraces, 287 

and soil δ15N did not differ between ridges and slopes (P>0.05). However, in Piro South, 288 

mean soil δ15N was highest on broad flat terraces (5.3±0.14‰), intermediate on shoulders 289 

(4.8±0.30‰) and lowest on adjacent mid and low slope positions (4.3±0.13‰) (P=0.005; 290 

Figure 3A). The broad flat ridgetops in Piro South were enriched by ~1‰ relative to the 291 

knife-edged ridges of nearby Piro North (4.0±0.24‰; P<0.001; Figure 3). Soil δ15N on 292 

the shoulder and mid slope positions in Piro South were not significantly different than 293 

equivalent topographic positions in Piro North (4.1±0.19‰; P>0.05). The low slope 294 

position was significantly lower in Piro North (4.2±0.20‰) than in Piro South 295 

(3.0±0.14‰, P<0.0001), a result driven by two of the four low slope replicates in Piro 296 

North. These replicates had δ15N levels >1‰ lower than any other position in either of 297 

the Piro sites (Figure 3). In contrast to soil δ15N, there were no significant differences in 298 

KCl-extractable inorganic N, net nitrification, or net N mineralization across slope 299 

positions or between sites (P>0.05) with the exception of NO3
-, which was elevated in 300 

Piro North relative to Drake (P=0.011; Table 1). Generally, the same was true during the 301 

dry season: inorganic nitrogen concentrations, and N cycling rates were unaffected by 302 
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slope position (Supplementary Table 2). However, we were unable to interpret the 303 

influence of MAP during the dry season because Piro South and Drake were sampled in 304 

January 2014, while Piro North was sampled in February 2015.  305 

Relationship between canopy N and canopy tree species and soil N status 306 

In contrast to topography and rainfall, both of which influenced soil δ15N but not 307 

inorganic N or N processing rates, differences in canopy N did not correlate with 308 

differences in soil δ15N (soil δ15N below high N canopy = 4.8±0.25; soil δ15N below low 309 

N canopy = 4.6±0.26, P>0.05; N=5; Table 2). However mean extractable NH4
+ 310 

(P=0.046), NO3
- (P<0.0001), net nitrification (P<0.0001), and net N mineralization 311 

(P<0.0001) were ∼ 1 order of magnitude higher in high vs. low N canopy plots in August 312 

of 2015 (Figure 4; Table 2). Similar trends were observed during our two additional 313 

sampling campaigns (February and May, 2014) (Supplementary Figure 1).  314 

With our tree species data, we produced a two-dimensional NMDS ordination plot 315 

with a stress value of 0.15, which represents the correlation between Bray-Curtis distance 316 

and the distances in ordination space. The separation of the high and low N plots and 317 

their centroids on the plot suggest that canopy species composition of the high N plots 318 

differs from that of low N plots (Supplementary Figure 2). Interestingly, only ten 319 

individual canopy trees were species that are known to nodulate (Sprent 2009), and there 320 

was no difference in their abundance between high and low canopy N plots (data not 321 

shown).  322 

DISCUSSION  323 
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 Our findings suggest that tropical nutrient dynamics and heterogeneity reflect 324 

interactions among multiple drivers that are spatially nested. On the Osa, annual rainfall 325 

and topographic variability dominantly control long-, but not short-term N availability. 326 

Rainfall varies at the scale of the Peninsula, topography at the smaller spatial scale of the 327 

landscape. Within a given slope position, soil inorganic N cycling is strongly correlated 328 

with local canopy N. Canopy N varies regionally as a result of climate (and likely 329 

phylogenetic sorting; Balzotti and others, Unpublished data). While the correlation 330 

between soil and canopy N could be the result of N rich soils creating N rich canopies or 331 

the reverse, we suggest below that in our sites it is likely that variation in canopy 332 

communities drive local variability in soil N (Asner and others 2014; Asner and Martin 333 

2015). This variation likely fluctuates over relatively small spatial scales and short 334 

timescales as trees grow and die, and may be modifying the influence of rainfall and 335 

topography on short-term N status (Figure 5).   336 

Regionally, MAP is a dominant control of long-term N cycling 337 

Our soil δ15N suggest that, on the Osa, regional variability in MAP creates long-338 

term differences in N status. At Drake, with high MAP (~5,000 mm rainfall y-1), soil δ15N 339 

was lower than at Piro South (3,000 mm rainfall y-1). This result is consistent with prior 340 

work in montane (Schuur and Matson 2001) and gradients in lowland-to-montane (Asner 341 

and Martin 2015) tropical forests that show broad rainfall-driven declines in soil δ15N. 342 

These studies suggest that, over long time scales, there is a net effect of MAP on soil N 343 

cycling and availability. The lower δ15N signature of Drake could be the result of several 344 

different mechanisms, which are not mutually exclusive: 1) Decomposition, N 345 

Page 31 of 55 Ecosystems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

17 

 

mineralization and nitrification could be inhibited by low oxygen availability in very wet 346 

soils and/or 2) denitrification of a large proportion of the NO3
- pool could result in less 347 

fractionation during N gas loss (Schuur and others 2001; Houlton and others 2006). We 348 

think that the latter explanation may be more probable in the Osa because decomposition 349 

rates remain extremely high in the well-drained soils even where rainfall is high and, 350 

unlike in poorly-drained montane sites, net primary productivity and above ground 351 

biomass are not reduced even at 5 m yr-1 rainfall. 352 

 While we found that MAP influenced soil δ15N, short-term metrics of N cycling 353 

and availability (i.e. inorganic N concentrations, net N mineralization, net nitrification) 354 

did not vary between geomorphically similar high and low rainfall sites (i.e., Drake vs. 355 

Piro North). Although the expectation is that δ15N reflects the net effects of short-term N 356 

availability and cycling over time (Handley and others 1999), there are few data from the 357 

lowland tropics that explicitly test the influence of annual rainfall on short-term N 358 

cycling. However, across a montane climosequence in Maui, Hawai’i (MAP 2,500 to 359 

>5,000 mm y-1), both long and short-term N metrics are correlated with MAP (Schuur 360 

and Matson 2001; Houlton and others 2007). Interestingly, the species composition 361 

across the Maui gradient is quite uniform, which makes it ideal as a climosequence but 362 

may mask the importance of tree species in creating short term and small spatial scale 363 

variation in N availability.  In the Osa, where diversity of trees is much higher, greater 364 

sampling may be required to see the influence of regional drivers in the face of local 365 

variation in the vegetation (see below). 366 

At the landscape scale, slope position is a dominant driver of long-term N cycling 367 
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Our data suggest that, within a given MAP zone on the Osa, long-term N status is 368 

also driven by soil residence time. We examined the influence of topography on soil N 369 

availability independently of MAP by comparing soil N from catenas in geomorphic 370 

equilibrium (Piro North) and disequilibrium (Piro South) from sites with similar climatic 371 

conditions. Soil δ15N was higher on slowly eroding flat terraces compared to knife-edged 372 

ridges, and similar between knife-edged ridges and their adjacent slopes (Figure 3). We 373 

interpret this as an effect of topographically mediated differences in soil age. Slowly 374 

eroding flat surfaces allow N availability to accumulate over long timescales, resulting in 375 

more open N cycling and the preferential loss of 14N over time. However, N 376 

accumulation, and thus cycling and14N losses, is less on knife-edged ridges due to rapid 377 

erosion. Thus, these sites have effectively younger substrates with relative less N and a 378 

more conservative N cycle. Others have observed comparable trends in soil δ15n along 379 

topographic gradients and proposed a similar mechanism of control (Amundson and 380 

others 2003; Hilton and others 2013). 381 

Contrary to what has been found in other parts of the world (Kitayama and others 382 

1997; Martinelli and others 1999), we did not detect significant effects of topography on 383 

short-term N cycling. As with the climate signal, we suggest this may be a result of 384 

species affects on short term N cycling metrics, and the need for more intensive sampling 385 

to document these effects where diversity is high. Previous work on one of the catenas 386 

included in our study was able to demonstrate a link between topography, soil δ15N and 387 

rates of inorganic N cycling (Weintraub and others 2015), but only through intensive 388 
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sampling of a single catena. It is possible that we did not detect the effects of topography 389 

(and/or climate) because we did not sample each catena sufficiently. 390 

Plant-soil feedbacks influence local short-term N cycling 391 

On the broad flat remnant terrace in Piro South, where MAP and topography 392 

remain constant, we found strong positive correlations between canopy N and soil NO3
- 393 

concentrations as well as net nitrification and net N mineralization rates. Under high 394 

canopy N, inorganic N concentrations were more than six times higher than in soils 395 

beneath low N canopies. However, we found no variability in soil δ15N. We also found 396 

evidence that the community of canopy emergent trees differed between plots with high 397 

and low canopy N, although there were very few putative N fixers (Sprent 2009) in any 398 

of the plots.   399 

High canopy N can either result from or cause high soil N. However, given the 400 

spatial scale of our canopy analysis, we suggest that our data provide an intriguing hint as 401 

to possible causation. First, different tropical forest trees growing in the same place have 402 

a wide range of canopy N that that been convincingly linked to phylogeny (e.g. Asner 403 

and Martin, 2015). Second, all of the plots included in this study are concentrated in a 404 

small area that does not host known variation in many other factors that drive differences 405 

in soil N (e.g. climate, parent material, topography, soil age).  Third, our analysis of the 406 

species composition data suggests these remotely-identified sites that differ in canopy N 407 

also differ in the community of canopy emergent species (Supplementary Figure 2). 408 

Lastly, if soil nutrients were the root cause of heterogeneity in foliar N, we might expect 409 

to see differences in soil δ15N as a reflection of sustained variability in N status. Instead, 410 
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we observed no differences in soil δ15N between high and low canopy N plots. While this 411 

line or reasoning is not a smoking gun - a priori differences in soil N could set the stage 412 

for the success of different tree communities, which then participate in a positive 413 

feedback with soil fertility.  However, we believe that given the available evidence, it is 414 

more likely that the stochastic distribution of trees across this small, relatively 415 

homogenous portion of the Osa landscape gives rise to patches of particularly high and 416 

low canopy and soil N. 417 

Hierarchical controls of N status on the Osa Peninsula 418 

The climatic, geomorphic, and biological heterogeneity of the Osa informs a 419 

conceptual framework through which to view our original hypotheses and the data that 420 

support (or do not support) them. Our first hypothesis, that N availability would be lower 421 

in Drake (5,000 mm y-1) than Piro North (3,000 mm y-1) was supported by differences in 422 

soil δ15N, but not by inorganic N concentrations, net nitrification or net N mineralization 423 

data. Similarly, our soil δ15N data suggested higher long term N availability, and thus 424 

more fractionating N losses, from broad, flat, slowly eroding terraces (Piro South ridge) 425 

compared with more rapidly eroding surfaces (Piro South slopes and all of Piro North). 426 

However, contrary to our hypothesis, we saw no differences in shorter-timescale N 427 

cycling metrics across sites with varying topography (Table 1).   428 

Overall, our data indicate that a spatially and temporally nested set of controls 429 

drive N cycling patterns across the Osa Peninsula (Figure 5). In this conceptual model, 430 

long-term integrative N cycling metrics (such as soil δ15N) measured in a particular place 431 

are influenced by factors that change over long timescales (i.e. topography, climate, and 432 
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parent material). In contrast, both long-term drivers and processes that fluctuate on 433 

shorter timescales (i.e. local tree assemblage, seasonality, and weather) influence metrics 434 

of short-term N availability (i.e. net nitrification and mineralization). 435 

This conceptual model helps us understand the lack of correlation between soil 436 

δ
15N and inorganic N availability on the Osa. Soil δ15N integrates short-term N dynamics 437 

because dominant N loss pathways favor 14N (Handley and others 1999). Thus, soil δ15N 438 

increases as a result of higher NO3
- losses. Such concordance is observed in some 439 

systems, including the aforementioned Maui climate gradient (Schuur and Matson 2001; 440 

Houlton and others 2007). The climosequence in Maui is in a montane system with plots 441 

located on virtually uneroded, gently sloping surfaces (<5% relief) that are ∼400,000 442 

year old and dominated by a single tree species (Schuur and others 2001). Weather at 443 

each site is also relatively stable, because the climate gradient is driven by plot position 444 

relative to the windward-leeward transition across the Haleakala Volcano. Because these 445 

other factors are relatively constant, we would expect all N cycling metrics to reflect the 446 

influence of rainfall (Figure 5). Indeed, the hallmark of a well-chosen climosequence is 447 

lack of variation in other factors that might obscure the signal of climate on the process of 448 

interest. 449 

 In contrast to Maui, our sites on the Osa Peninsula differ in both long- and short-450 

term drivers of N cycling. Of the metrics we measured, only soil δ15N is influenced 451 

predominantly by long-term drivers such as MAP and topography (Figure 5). Shorter-452 

term N cycling metrics are influenced by those factors as well, but their signal may be 453 

obscured by differences in other controls (e.g., tree species and weather) that vary over 454 
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smaller spatial scales and shorter timescales. The strong correlations between canopy and 455 

NO3
-, net nitrification, and net N mineralization suggest that species, and their associated 456 

functional diversity, may have a particularly strong influence over local variability in 457 

nutrient availability on the Osa (Figure 5).  458 

Conclusions 459 

 It has long been recognized that the conception of tropical forests, even lowland 460 

tropical forests, as uniformly N rich and P-poor is an oversimplification (Vitousek 1984; 461 

Townsend and others 2008; Porder and Hilley 2011). In particular, the variation in 462 

multiple drivers across tropical landscapes has presented a challenge to biogeochemists 463 

and ecosystem ecologists seeking to understand tropical forest properties at large spatial 464 

and temporal scales. Our work suggests a hierarchical framework for considering this 465 

biogeochemical diversity. We highlight the role of just a few factors (parent material, 466 

climate, topography) in driving the long-term nutrient status of landscapes, a result that 467 

has been born out in other systems (Porder and others 2015). However, shorter-term 468 

nutrient dynamics on the Osa are also influenced by canopy characteristics, which are 469 

likely the result of small-scale tree aggregations and the phylogenetic signal they impart 470 

to the canopy. If our results from the Osa are representative, community shifts that result 471 

from climate change may play a key role in driving the biogeochemical responses of 472 

tropical forests.   473 
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Airborne LiDAR-based digital elevation models of the three landscapes a) Piro South, b) Piro North, and c) 
Drake. White lines on the elevation maps indicate catena locations in each site. Note that catenas in Piro 

South start on broad, flat, slowly eroding terraces and cross a break in slope (knickpoint) to steep, rapidly 

eroding portions of the landscape. In contrast, catenas in Piro North and Drake Bay start on knife-edged 
ridges with similar erosion rates and soil residence times to their adjacent slopes. MAP is mean annual 

precipitation.  
152x59mm (72 x 72 DPI)  
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Map of the canopy nitrogen metric generated via imaging spectroscopy from the Carnegie Airborne 
Observatory along a flight line in Piro South. The white circles highlight the 0.25 ha high and low canopy 

nitrogen plots (ten total). The inset shows variability in canopy nitrogen between one high and one low plot. 
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Mean soil δ15N (± 1 SE) of soils by site and slope position (0–10 cm soil, N = 8). Different letters denote 
significant (P<0.05) differences between slope positions within A) Piro South, B) Piro North, and C) Drake. 
The “terrace” position in Piro North refers to the broad flat terrace in Piro North, while the “ridge” positions 

in Piro South and Drake are knife-edged ridges in those regions.  
152x70mm (72 x 72 DPI)  
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The relative difference in soil nitrogen concentrations (0 – 10 cm) beneath 0.25 ha plots with high (N=5) 
and low (N=5) canopy nitrogen. Values above one show the factor by which each metric is elevated in high 
vs. low canopy nitrogen plots. Asterisks denote significant (P<0.05) differences between high and low plots. 

76x62mm (72 x 72 DPI)  
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A conceptual model for understanding which drivers may exert influence on commonly used metrics of 
nutrient status in the Osa Peninsula. While the influence of these drivers varies over different spatial scales, 
this diagram focuses on the plot (sub hectare) scale. For example, parent material, climate, and topography 
influence soil δ15N and potentially other metrics of long-term nutrient availability. However, processes that 
vary over shorter timescales, such as weather, do not. In contrast, short-term metrics, such as nitrification, 
are potentially influenced by all of the drivers included in this diagram. Metrics measured in this study are 

bolded.  
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Title: Mean soil chemical characteristics of catena soils.    
Legend:Soil samples (0-10 cm) were collected from four catenas in each site during the wet season (July 

2014). Along each catena we sampled in four slope positions. Values are arithmetic means (± SE), with the 

exception of the pH column, which contains true means (range). Lowercase letters indicate significant 
differences (P<0.05) between slope positions at each site. Capital letters indicate significant differences 

(P<0.05) between site means. MAP is mean annual precipitation.  
427x201mm (72 x 72 DPI)  
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Title: Mean canopy N and soil chemical characteristics of high and low canopy N plots.  
Legend: Soil samples (0-10 cm) were collected from ten circular 0.25 ha plots with either high or low canopy 
N (N=5). All plots were located on the broad flat terrace in Piro North and sampled during the wet season 
(August 2015). Lowercase letters indicate significant differences (P<0.05) among all plots. Capital letters 
indicate significant differences (P<0.05) between high and low canopy N plot means. The Foliar N column 
includes the standard deviations of remotely sensed foliar N in each plot relative to the flight line mean.    

473x161mm (72 x 72 DPI)  
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The top panels show relative differences in soil chemical characteristics (0 – 10 cm) beneath 0.25 ha plots 
with relatively high (N=5) and low (N=5) canopy nitrogen. Data in Panel A and B are from samples collected 
in February and May 2015, respectively. Values greater than one represent the factor by which each soil 
characteristic was elevated in high vs. low canopy nitrogen plots. Asterisks denote significant (P<0.05) 

differences between high and low plots. The table contains arithmetic means (± SE) from each of the canopy 
N plots. Lowercase letters indicate significant differences (P<0.05) among all plots. Capital letters indicate 

significant differences (P<0.05) between high and low canopy N plot means.  
259x231mm (72 x 72 DPI)  
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Soil samples (0-10 cm) were collected from four catenas in each site during the dry season. Piro South and 
Drake were sampled in January 2014 and Piro North was sampled in February 2015. Along each catena we 
sampled in four slope positions. Values are arithmetic means (± SE). Lowercase letters indicate significant 
differences (P<0.05) between slope positions at sd. Capital letters indicate significant differences (P<0.05) 

between site means. MAP is mean annual precipitation.  
248x173mm (72 x 72 DPI)  
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A two-dimensional nonmetric multidimensional scaling (NMDS) ordination plot representing Bray-Curtis 
dissimilarities between high (red) and low (blue) foliar N plots (N= 5; Stress=0.15). Ellipses represent 

standard deviations. Lines connect each plot point to the group centroid.  
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