AGRICULTURAL WATER AND ENERGY MANAGEMENT

PASI 2013: Training Institute on Adaptive Water-Energy Management in the Arid Americas

Rodrigo Fuster G. rfuster@uchile.cl

Contents

- Context:
 - water management system as key Issue
- Azapa Valley Case:
 - Individual use of water
- Energetic vulnerability
- Copiapó Case:
 - Community use of water
 - Energy and water management

Context: use of water in agriculture

- Management differences
 - Surface water
 - Usually, shared infrastructure use for distribution and use. e.g. Channels "n" users.
 - Groundwater
 - Individual use Dam?
 - In Chile, only one aquifer with an Organization for joint water management

Brief description of water management in Chile

Water Depletion State

	Physical Availability			
Basin	Surface Waters	Groundwaters		
Lluta				
Loa	0			
Copiapó	۲	۲		
Limarí	۲	۲		
Maipo	0	۲		
Maule	0	0		
Biobío	0			
Backer				

Copiapó

Aquifers cases over granted

Mop 2012

Challenge

- How energy can play a rol in water management.
- From the State point of view
- From farmers point of view

Azapa Valley case

We know nothing

Universidad de Chile Facultad de Ciencias Agronómicas Departamento de Ciencias Ambientales y Recursos Naturales Renovables

Azapa Valley

Azapa Valley Case Atacama Desert

- Absolute aquifer dependence
- WUO's absence
- Individual water extraction

Azapa Valley Case Atacama Desert

- Absolute aquifer dependence
- WUO's absence
- Individual water extraction

- Actual use (theorical)
 - Hydrogeological survey and model

Image Landsat Data Sio, NOAA, U.S. Navy, NGA, GEBCO

Azapa's Aquifer Hydrogeological Model (MHG)

• Allows to simulate static groundwater levels in time and space, according to the characteristics and behaviour of the hydric system components

The Hidrogeological Model is Calibrated, allowing Simulate Scenarios by varying the determinant components

Effective use amount to 740 l/s

Azapa Valley Case Atacama Desert

Potential use

According to CPA (2013), granted water rights amount to 1484 I/s

Azapas Valley Case Atacama Desert

 Energy and water management (sustainability)

- Energy as a control indicator (monitoring)
- Ignorance of critic water table levels
- Impossibility to answer/prevent the crisis.

Groundwater Extraction Wells

Without a joint management of different users, there's no knowledge of both water table levels or the vulnerability of the associated productive systems

Red points are vulnerable farmers

Challenge

How much water is pumping?

• We can estimate ET0 x Kc → L/s

Etr was calculated (2013) 1590 L/s

Challenge

- How much energy is required?
 - We dont know

What is what defines the *vulnerable condition*?

The profitability of what is produced (kind of farmer and kind of crop)

Energetic Vulnerability

Olive trees in Azapa Valley

- Olive trees need an annual average of 0.27 L/s per cultivated ha, varying depending on the month of the year (Torres & Acevedo 2008), these trees have an average yield of 8400 kg of olives per ha, which are sold in around €1 per kg (without any kind of treatment), hence 1 Ha of olive trees offers an average gross profit of €8400.
- On the other side, the costs related to this activity are the rates of pumping groundwater, which has an approximate price of €384 per L/s (DGA 2011), or €103 for the 0.27 L/s needed for 1 Ha of olives (in low rates hours),
- other operational and maintenance costs that can sum up to €670 (depending on the altitude of the land, among others) (DGA 2011), and the costs of labor that can vary between €3500 to €4500 per hectare.
- Thus, 1 ha of olives trees represents a net profit of around €4000 to €3000 per year. (Sotomayor 2000).

• What happen if the water table descends?

Personal communication by e-mail with Amador Torres, academic of the University of Tarapacá, May 12th 2013.

CNR project: water transfer

Via Marina Proyecto Aquatacama

Knowdlege and evaluation of energetic requirements

- CNR's research to discuss regarding the crops profitability, the maximum value associated to water use to transform it into energy
- The results are: kind of vulnerable crops and vulnerable users

- How much water is used?
- How much energy is requiered?

 It depends of how deep the water table is

Crops and water profitability

		Water value		
Cultivo	Stage	(energy)	VAN	TIR
Citrus Lemon	No cost of water		\$ 201.791.928	33%
	Break even	\$ US 0,87	\$ 0	15%
Olives	No cost of water		\$ 11.132.920	17%
	Break even	\$ US 0,04	\$ 0	15%
Avocado	No cost of water		\$ 174.828.224	27%
	Break even	\$ US 0,56	\$ 0	15%
Potato	No cost of water		\$ 8.074.445	54%
	Break even	\$US 2,66	\$ O	15%
Tomato	No cost of water		\$ 33.199.295	59%
	Break even	\$US 3,5	\$ 0	15%

Economic Sensitivity Analysis

Grounwater Extraction Wells

Without a joint management of different users, there's no knowledge of both water table levels or the vulnerability of the associated productive systems

Individual Logic of extracting everything possible, trend to depletion

Grounwater Extraction Wells

WITH joint management of the different users, and WITH knowledge of the water table level, is possible an adaptation to a vulnerability condition

A change in water management system

COPIAPÓ CASE

Región de Arica y Parinacota

Región de Tarapaca

Región de Antofagasta

Cuenca del Río Copiapó

Región de Atacama

Región de Coquimbo

Copiapó Case Atacama desert

 Absolute aquifer dependence

- There is a WUO
- Regulated water extraction

- Actual Use (teórico)
 - x No existe estudio y modelo hidrogeológico
 - Existe sistema de monitoreo
 - X Usuarios agrícolas no conocen costo energético.

Distancia a lo terras del valle del río Conjanó Renti

Distancia a lo largo del valle del río Copiapó (km)

Real time monitoring

PLATFORM OF MONTIORING OSMATIC

Mobilize the available water volume (insufficient in A) from users energetically vulnerables to demanding users (B)

Final remarks

- The link between water use and energy is indissoluble, water management is to manage energy.
- Institutional context defines the conditions for the management of water and energy.
- Key factor, having a community organization to manage common resources.

