Agent-based modeling

Moira Zellner IAI PDS 2014 – Antigua, Guatemala

Defining a complex system

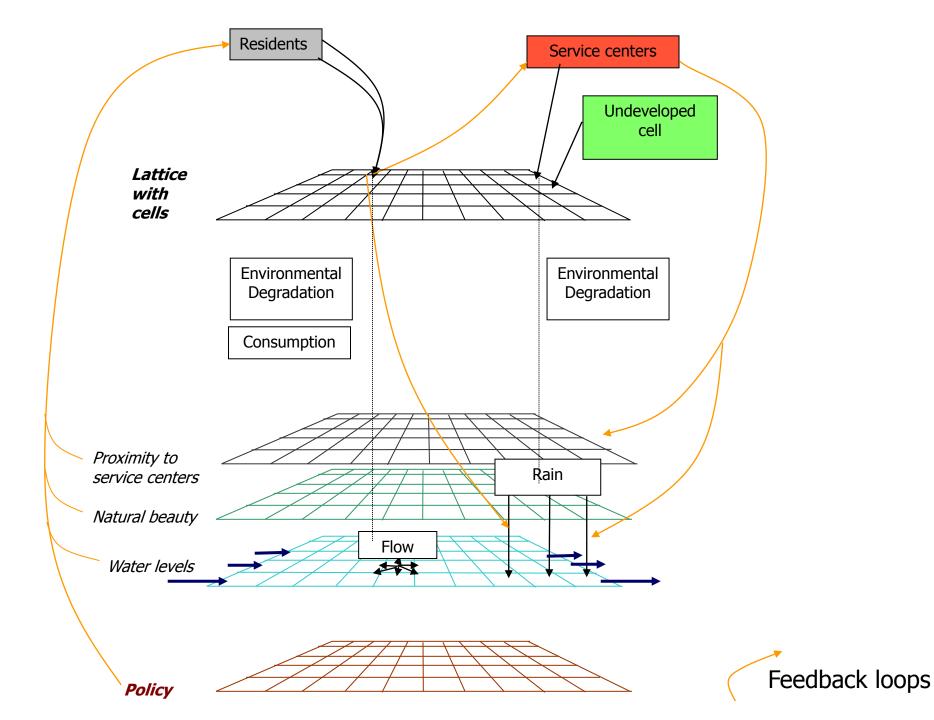
- Generally associated to social and biological systems (actively seeking connections).
- Strong interactions, so that current events heavily influence the probability of future events
- Characteristics
 - Multiple agents and environment: location, attributes (heterogeneous), success measure, interaction patterns
 - Agent strategies (heuristics: sensing, processing and acting): adaptation and evolution (trial and error through learning, survival)
 - Co-evolution and path-dependence: time and space matter
 - Emergent patterns: decentralized coherence arising from change
 - Difficulty to predict: handling uncertainty, lever points
- Difference with complicated systems

Kinds of questions

- Correlation, description, and explanation
- Standing ovation (social contagion)
 - Magnitude (fn of quality and thresholds) v. dynamics (e.g., waves, fn of location and view, differential influence)
 - Implications for design (policy)
- Beehive (the coordination effect of heterogeneity)
 - Temperature stability (negative feedback)
 - Attack (positive feedback)
- Influence of social and environmental processes on settlement patterns
 - "Failing" can be good

Challenges with ABM

- Messy:
 - Making the right simplifications: problem and questions (purpose)
 - Verification
 - Sensitivity analysis: targeted
 - Documentation
- Difficult to validate:
 - Conceptual: theory and purpose
 - Empirical: qualitative and quantitative matching
- Uncertain:
 - Direction for empirical research
 - Optimality v. robustness (numbers v. insight)
 - Scenarios and plausibility
 - Model ensembles


Uses of ABM

- Understanding: relating observations to processes
 - Bridge between disciplines
 - Bridge between science and policy (participatory modeling)
- Theory development: discovery and formalization
 - Explicitness and precision
- Prediction...?

Thursday

The emergence of urban patterns and their social and environmental impacts

- Conceptualization:
 - Problem, questions, actors, environment, interaction, parameters and scenarios, social and environmental metrics.
 - Integrating different disciplines: sources of data (empirical, expert knowledge, scenarios/questions)

SOME-GW (only interface): Conceptualization and representation

- Utility functions
 - Form
 - Factors and weights
 - Normalization
- Strategies
 - Optimizing
 - Satisficing
 - Other possibilities: Service centers, elimination by aspects
- Environmental processes
 - Degradation of natural beauty
 - Groundwater flow: Darcy's Law
- Evaluation of outputs (multiple perspectives)
 - Using different "currencies"

Ethics and values

- Participatory modeling: conceptual validation and collective learning and innovation (URISA)
- Actors and preferences
- Policy scenarios