

Ethanol Policies and Production. Federal incentives and mandates have been instrumental in increasing ethanol production.

POINT / COUNTERPOINT

The Costs Of Biofuels

Two views on whether corn ethanol and, eventually, ethanol from cellulosic biomass will efficiently deliver **NATIONAL ENERGY SECURITY**

THE DRUMBEAT in fa-

vor of biofuels has only increased since President George W. Bush's 2007 State of the Union address calling for a 20% cut in gasoline use, much of it to be replaced with alternative fuels such as biofuels. Indeed, inclustry has begun investing in biofuels and biofuels R&D as never before. Consumers, too, are eager for anything that might trim the cost of a gallon of gasoline.

But the criticisms and questions that dog the use of biofuels remain formidable. Can the U.S. really afford to devote its entire corn crop to the production of ethanol, as might be required under some of the targets set by Presi-

DEBATES Dale (left), a chemical engineering professor at Michigan State University, contends that well-chosen metrics need to be used in order to evaluate the true costs and benefits of biofuels; Pimentel, an entomologist and professor of agricultural sciences at Cornell University, argues that biofuels are costly from both economic and environmental perspectives and also raise significant ethical concerns. tional to support or oppose biofuels without relevant performance standards than it is to support or oppose ballpoint pens without appropriate criteria. Therefore, what are the appropriate comparison standards for biofuels?

Two issues are pivotal for all petroleum alternatives: national security by significantly reducing petroleum dependence and climate security by significantly reducing greenhouse gases. Biofuels should substantially reduce petroleum used and greenhouse gases generated compared with their petroleum-derived alternatives. Ideal biofuel metrics are petroleum consumed and greenhouse cases generated per mile

Atmos. Chem. Phys. Discuss., 7, 11191–11205, 2007 www.atmos-chem-phys-discuss.net/7/11191/2007/ © Author(s) 2007. This work is licensed under a Creative Commons License.

For Official Use

Organisation de Coopération et de Développement Economiques Organisation for Economic Co-operation and Development

GENERAL SECRETARIAT

N₂O release from agro-biofuel production negates global warming reduction by replacing fossil fuels

This study draws on 47 published assessments that compare bio-ethanol systems to conventional fuel on a life cycle basis, or using life cycle assessment (LCA). A majority of these assessments focused on net energy and greenhouse gases, and despite differing assumptions and system boundaries, the following general lessons emerge: (i) make ethanol from sugar crops, in tropical countries, but approach expansion of agricultural land usage with extreme caution; (ii) consider hydrolysing and fermenting lignocellulosic residues to ethanol; and (iii) the LCA results on grasses as feedstock are insufficient to draw conclusions. It appears that technology choices in process residue handling and in fuel combustion are key, whilst site-specific environmental management tools should best handle biodiversity issues. Seven of the reviewed studies evaluated a wider range of environmental impacts, including resource depletion, global warming, ozone depletion, acidification, eutrophication, human and ecological health, smog formation, etc., but came up with divergent conclusions, possibly due to different approaches in scoping. These LCAs typically report that bio-ethanol results in reductions in resource use and global warming; however, impacts on acidification, human tox-icity and ecological toxicity, occurring mainly during the growing and processing of biomass, were more often unfavourable than favourable. It is in this area that further work is needed.

Paris, 11-12 September 2007

Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land Use Change

Timothy Searchinger,¹* Ralph Heimlich,² R. A. Houghton,³ Fengxia Dong,⁴ Amani Elobeid,⁴ Jacinto Fabiosa,⁴ Simla Tokgoz,⁴ Dermot Hayes,⁴ Tun-Hsiang Yu⁴

Critical Review

Critical Analysis of the Mathematical Relationships and Comprehensiveness of Life Cycle Impact Assessment Approaches

JANE C. BARE[†] AND THOMAS P. GLORIA[‡]

U.S. Environmental Protection Agency, National Risk Management Laboratory, Cincinnati, Ohio 45268. Phone: 513-569-7513. FAX: 5. Email: bare.jane@epa.gov and ICF Consulting, 33 Hayden Avenue, Massachusetts 02421 Email: tgloria@icfconsulting.com

The impact assessment phase of Life Cycle Assessment (LCA) has received much criticism due to lack of consistency. While the ISO standards for LCA did make great strides in advancing the consensus in this area, ISO is not prescriptive, but has left much room for innovation and therefore inconsistency. To address this lack of consistency, there

Environ. Sci. Technol. 2007, 41, 7551-7557

Life Cycle Impact Assessment Weights to Support Environmentally Preferable Purchasing in the United States

THOMAS P. GLORIA,*,† BARBARA C. LIPPIATT,‡ AND JENNIFER COOPER§ cancerous effects (8%), ecological toxicity (7%), eutrophication of water bodies (6%), land use (6%), and human health noncancerous effects (5%). Also of interest are the identified impact areas of concern assigned the lowest weights: smog formation (4%), indoor air quality (3%), acidification (3%), and ozone depletion (2%). Their low weights may indicate that there is not as much immediate concern or that the remedial actions associated with the impact for the most part are underway.

Normalization

"Normalization is the calculation of the magnitude of the category indicator <u>results relative to some reference information</u>. The aim of the normalization is to understand better the relative magnitude for each indicator results of the products system under study"

ISO 14044:2006

Norris, 2001, Lautier et al., 2010

International Organization for Standardization iso.org

Weighting

"Weighting is the process of converting indicator results of different impact categories by using numerical factors based on value-choices"

ISO 14044:2006

$$\sum w_i = 100$$

FIGURE 1. General environmentally preferable purchasing weights.

Weights by Stakeholder Group

	all time horizons (100%)				short-term time horizon (24%)			medium-term time horizon (31%)			long-term time horizon (45%)					
impact category	all	producer	user	LCA expert	all	producer	user	LCA expert	all	producer	user	LCA expert	all	producer	user	LCA expert
global warming	29	16	30	50	7	5	9	7	43	26	43	60	52	30	57	68
fossil fuel depletion	10	12	7	10	15	13	12	15	7	13	3	13	4	10	1	5
criteria air pollutants	9	7	6	13	18	11	11	48	2	3	3	1	1	2	0	1
water intake	8	7	10	5	7	7	8	3	10	8	14	6	8	8	9	6
cancerous	8	8	6	6	8	11	6	5	6	4	6	4	9	9	6	7
ecological toxicity	8	8	11	3	6	5	9	2	9	12	11	3	9	9	13	5
eutrophication	6	8	6	3	8	8	9	4	6	10	5	5	3	4	2	2
land use	6	6	9	3	7	7	11	3	6	6	8	3	5	6	6	3
noncancerous	5	11	4	2	6	12	5	3	4	6	2	2	6	17	2	2
smog formation	4	4	3	2	7	6	6	4	1	3	1	1	0	1	0	1
indoor air quality	3	5	3	1	7	9	6	4	1	1	1	1	0	0	0	0
acidification	3	4	4	1	4	6	6	1	2	4	2	1	2	2	2	1
ozone depletion	2	3	2	1	2	3	3	1	2	4	2	1	2	3	1	1
inconsistency	0.03	0.05	0.03	0.05	0.04	0.06	0.06	0.05	0.02	0.04	0.02	0.06	0.06	0.11	0.08	0.13

TABLE 3. Environmental Impact Importance (%) by Voting Interest and Time Horizon

Weighting Insensitivity

Geographic Distribution of Fuel Processing Facilities in the US.

Petroleum refineries (bottom) are predominantly located on the coasts near major seaports – whereas biorefineries (top) are concentrated in the northern Midwest in the Corn Belt States. Consequently, federal biofuel mandates may be environmentally inefficient in some regions but favorable in others, depending upon transportation impacts.

Analytic aid in result interpretation

- Multiple indicators (different units)
- Multiple alternatives (Comparative Assessments)
- Uncertainty
- Decision Makers
- Environmental tradeof

100 80 60

> 40 20

> > Agricultural and occupation Terestialecotoxicity

Water depletion Metaldepletion

Otone depletion climate change Unisine satisfion Naineecocovicity

%

	Impact category	Unit	LIQUID	POWDER		
	Metal depletion	kg Fe eq	0.000199	0.00443		
	Water depletion	m3	0.00266	0.00138 0.000262		
	Terrestrial ecotoxicity	kg 1,4-DB eq	0.000706			
- LL -	Agricultural land occupation	m2a	0.0102	0.021		
2TTO	Ozone depletion	kg CFC-11 eq	9.24E-09	6.65E-09		
.0115	Climate change	kg CO2 eq	0.090378177	0.102304355		
	Ionising radiation	kg U235 eq	0.00689	0.0203		
	Marine ecotoxicity	kg 1,4-DB eq	0.00051	0.00104		
	Liver on toxicity	be 1 d DB eq	0.0195	0.041		
			0.00143	0.000775		
	=100020	DB eq	0.000702	0.00117		
		eq	0.000518689	0.000436512		
		9	7.05104E-05	7.92817E-05		
		voc	0.000306118	0.000289197		
		- eq	0.0329	0.0392		
			0.0000349	0.000042		
		10 eq	0.000159255	0.00015987		
~ ~ ~ ~		^	0.0000195	0.0000115		
Uran respectively and r	Procedulation of the set of the s	³⁰				

Trade-off Evaluation

Compensation (linearity)

Absolute vs Relative

Normative (External)

- "should be"
- Absolute
- Context free
- Transitivity

Transitivity

Intransitivity

Descriptive (Internal)

- "How they are"
- Relative

- Context effect
- Intransitivity

I'm a connoisseur of every restaurant's second cheapest bottle of wine.

someecards

Stochastic Outranking

Pedigree Matrix

Table 3 – Pedigree matrix for managing cost data quality issues in eco-efficiency									
Indicator score	1	2	3	4	5				
Reliability of source	Verified data based on measurements	Verified data partly based on assumptions or non- verified data based on measurements	Non-verified data partly based on assumptions.	Qualified estimate (e.g. by industrial expert)	Non-qualified estimate or unknown origin				
Completeness	Representative data from a sufficient sample of sites over an adequate period to even out normal fluctuations	Representative data from a smaller number of sites but for adequate periods	Representative data from an adequate number of sites but from shorter periods	Representative data but from a smaller number of sites and shorter periods or incomplete data from an adequate number of sites and periods	Representativeness unknown or incomplete data from a smaller number of sites and/or from shorter periods				
Temporal differences	Less than 0.5 years of difference to year of study	Less than 2 years difference	Less than 4 years difference	Less than 8 years difference	Age of data unknown or more than 8 years of difference				
Geographical differences	Data from area under study, same currency	Average data from larger area in which the area under study is included, same currency	Data from area with slightly similar cost conditions, same currency, or with similar cost conditions, and similar currency	Data from area with slightly similar cost conditions, different currency	Data from unknown area or area with very different cost conditions				
Further technological differences	Data from enterprises, processes, and materials under study	Data from processes and materials under study from different enterprises, similar accounting systems	Data from processes and materials under study but from different technology, and/or different accounting systems	Data on related processes or materials but same technology	Data on related processes or materials but different technology				

http://cxdd.broceliande.kerbabel.fr/?q=node/449/226

Stochastic assignment of weights explores all possibilities within the feasible weight "space" using Monte Carlo Analysis (MCA).

Stochastic Weights

Weight

SMAA-LCA results

Stochastic Outranking * Stochastic Weight = Stochastic Overall Score

Probabilistic ranking

Meet the Decision Makers

1.Neutral

2.Bean Counter

3.Water Activist

4. Global Warming Activist

5.Social Impact focused

mediabistro.com

Stochastic Weights (w/ preferences)

Prado-Lopez et al., 2013

Conclusions

- Interpretation of Comparative LCAs:
 - Tradeoffs (Relative)
 - Partially Compensatory
 - Performance Uncertainty
 - Weight Uncertainty

SMAA-LCA

Thank You!

UIC Department of Urban AT OHICAGE Planning and Policy IAN PLANNING & PUBLIC AFFAIRS

This material is based upon work supported by the NSF under Grant No. 1140190. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the NSF.

Sustainable Energy & **Environmental Decision Science**