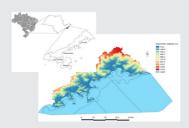


SOCIAL ECOLOGICAL SYSTEMS RESILIENCE ANALYSIS USING SYSTEM DYNAMICS MODEL – CASE STUDY

Bruno Meirelles de Oliveira¹ & Joseph Harari²

- 1- Institute of Energy and Environment, University of São Paulo, Brazil. bruno.meirelles@usp.br
- 2- Institute of Oceanography of the University of São Paulo, Brazil. joharari@usp.br

ABSTRACT


Governance of social ecological systems (SES) is a difficult task. Embrace its complexity, the coupled nature of social and ecological dimensions, feedbacks and non-linearity of its attributes and the necessity of dealing with society participation in the decision process make the challenge bigger. Resilience is a growing research field that can collaborate with this discussion. Resilience is a SES feature that enhance its capacity of maintain identity under different systems changes. This work uses system dynamics theory as foundation to build a Dynamic Resilience Index. This index uses Cobb-Douglas equation to encompass several resilience attributes as biodiversity, social networks, institutions, polycentric governance and others, and combine them with ecosystem services in a integrative and system based approach. The article concludes that system dynamics is a powerful tool to embrace resilience analysis and can collaborate with the social perspectives of social ecological systems analysis

Resilience?

"resilience, that is a measure of the persistence of systems and of their ability to absorb change and disturbance and still maintain the same relationships between populations or state variables" (HOLLING,1973)

"capacity of a social ecological system to continue providing some desired set of ecosystem services in the face of unexpected shocks as well as more gradual ongoing change" (BIGGS et al. 2015)

Ubatuba

Ecosystem Services Resilience

Diversity - existence of multiple forms and behaviors:

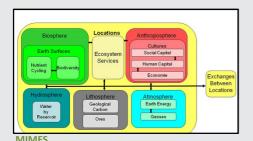
Efficiency - performance with modest resource consumption; Adaptability - flexibility to change in response to new pressures:

Cohesion - existence of unifying forces or linkages.

Maintain diversity and redundancy – systems with high levels of biodiversity and redundancies tend to be more resilient in providing ecosystem services;

Manage connectivity – ecosystem recover from disturbances using internal links of species and social actors.

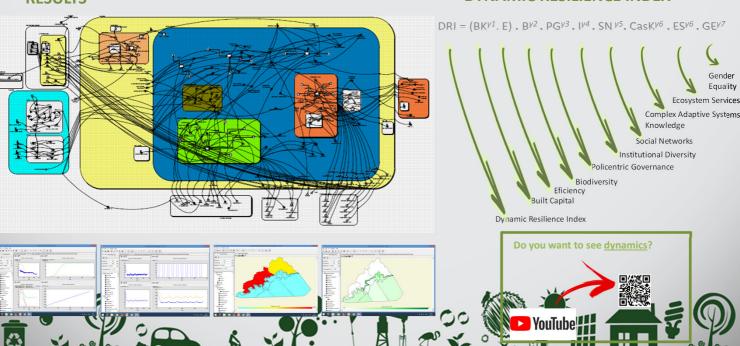
Manage slow variables – identify slow variables and their feedbacks is a challenging effort, but understanding these general system features enhance resilient behavior;


Foster Complex Adaptive Systems (CAS) thinking – comprehension of the need of integrated approaches, non-linearity and uncertainty regarding ecosystem services production in social ecological system enhance the ability to deal with changes, and then increases resilience;

Encourage learning – studying how systems works reduces the uncertainties and enlighten non-linearity behavior, experimentation and monitoring thus can enhance knowledge and foster resilience;

Broaden participation – participation enhance relationships, can build trust, can possibly facilitate learning and make collective action possible.

Promote polycentric governance systems – provides a structure in governance that allows the other principles to develop and also enhances participation and social networks.


METHODS

The Multi-Scale Integrated Model of Ecosystem Services

RESULTS

DYNAMIC RESILIENCE INDEX

