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The design and implementation of effective environmental policies need to be informed by a holistic
understanding of the system processes (biophysical, social and economic), their complex interactions,
and how they respond to various changes. Models, integrating different system processes into a unified
framework, are seen as useful tools to help analyse alternatives with stakeholders, assess their outcomes,
and communicate results in a transparent way. This paper reviews five common approaches or model
types that have the capacity to integrate knowledge by developing models that can accommodate
multiple issues, values, scales and uncertainty considerations, as well as facilitate stakeholder engage-
ment. The approaches considered are: systems dynamics, Bayesian networks, coupled component
models, agent-based models and knowledge-based models (also referred to as expert systems). We start
by discussing several considerations in model development, such as the purpose of model building, the
availability of qualitative versus quantitative data for model specification, the level of spatio-temporal
detail required, and treatment of uncertainty. These considerations and a review of applications are
then used to develop a framework that aims to assist modellers and model users in the choice of an
appropriate modelling approach for their integrated assessment applications and that enables more
effective learning in interdisciplinary settings.
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1. Introduction

Effective environmental management requires an understand-
ing of the interactions between policy choice and complex social,
economic, technical and environmental processes and related aims.
The predicted outcomes then need to be assessed with regard to

* Position papers aim to synthesise some key aspect of the knowledge platform
for environmental modelling and software issues. The review process is twofold - a
normal external review process followed by extensive review by EMS Board
members. See the Editorial in Volume 21 (2006).
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feedbacks, side effects and, where possible, trade-offs among
various, often conflicting, objectives or as distributed impacts
within one objective, for example spatial trade-offs. Both positive
and negative impacts may also occur over very different time
scales, with environmental benefits not being seen for years and in
some cases decades, while economic and social costs may be more
immediate and more precisely estimated (e.g. lost income).

There is an increasing awareness of the complexity of evaluating
these types of interdependences to inform decision-making.
Models, systematically integrating knowledge developed across a
broad range of fields (such as economics, ecology, psychology and
sociology, hydrology and agronomy), are essential to evaluate, or
even understand the nature of, these types of trade-offs. The need
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for such integrated assessment models or tools to enhance the
effectiveness of decision-making and management has been widely
acknowledged (see for example Bland, 1999; Voinov and Bousquet
2010; Carnevale et al., 2012; Hong et al., 2012; Jakeman and Letcher,
2003; Gough et al., 1998; Kragt et al., 2011; Liu et al., 2008; Oxley
et al., 2004; Pahl-Wostl, 2007; Rotmans, 1998; Schneider, 1997;
Zerger et al., 2011).

This paper reviews five broad classes of approaches that have
the capacity to integrate knowledge (from various sources and of
different types and forms) to develop models, which can be used to
understand these complex trade-offs. The paper starts by consid-
ering the use of the term ‘integration’ for modelling studies. Various
purposes for developing models are then explored and several
considerations including temporal and spatial scales, uncertainty in
knowledge and data availability are discussed. These sections then
inform a review of approaches to developing integrated assessment
model types that have been applied in the literature. The paper
concludes with a framework for choosing the appropriate method
given the nature of the integrated assessment application.

1.1. What is meant by ‘integration’?

The term ‘integration’ is used by different people in different
ways. At least five different but related uses of the term ‘integration’
in the context of integrated assessment can be identified in the
literature with various loci in the modelling process. Integration,
according to Jakeman and Letcher (2003), is a process not just an
outcome, and may refer to:

i. Integrated treatment of issues — arises because manage-
ment options for many natural resource problems have im-
pacts on other social, economic and environmental issues.
Concurrently considering the combined or integrated effects
of management options may improve management decisions
and reduce the occurrence of negative side effects. In this case
integration is part of a system-wide approach, where one
tries to look at various parts of the system as a whole. Here,
the target system can be subdivided into subsystems ac-
cording to more focused stakes. Voinov and Shugart (2013)
distinguish between integrated and integral modelling, to
stress that there may be different ways to conduct integra-
tion: in the former case, the system is considered as a
collection of independent components, representing various
subsystems (water, markets, agriculture, etc.); in the latter
case integration is done at a lower level, when all the sub-
systems are described simultaneously as integral parts of the
whole. This is an initial step in integration, which may involve
stakeholders.

ii. Integration with stakeholders. The level and success at
which model outputs are utilized will often depend on how
connected stakeholders are to the model and how relevant
model outputs are to policy and extension activities (Krueger
etal., 2012; Voinov and Bousquet, 2010). Integration with and
among stakeholders may vary from updating community
groups of model outputs to large-scale inclusion of stake-
holder views and knowledge at all stages of the modelling
process. Various classifications of the types of integration
between stakeholders and modellers have been given in the
literature (e.g., Biggs, 1987; Martin and Sherington, 1997;
Pretty, 1995). Integration of knowledge — sometimes known
as participation or engagement — can be a side activity in the
modelling process and may occur at any stage from elabora-
tion of knowledge to use of models (Barreteau et al.,, 2013). It
is also possible for modelling to be a side activity in the
integration of knowledge. An example here involves scenario

studies as carried out in the PRELUDE project (EEA, 2007) in
which models contribute to participatory scenario develop-
ment by providing quantitative information, insight in causal
relations and side effects, consistency checks and/or
visualisation.

iii. Integration of disciplines — involves the integrated consid-
eration of two or more disciplinary views of a management
problem and its associated system boundaries. An integrated
knowledge of the target system comes after these disciplinary
analyses, negotiating with interest groups, with the challenge
of transforming this integrated (most often complex)
knowledge into a model (e.g. Barton et al., 2012).

iv. Integration of processes and models — requires combining
two or more models of different systems or processes in a
system (see Laniak et al., 2013 for a review). These processes
may be biological, chemical, physical, economic or social.
However, such integration may necessitate combining
modelling techniques from disparate disciplines (e.g.
Haapasaari et al., 2012). Here the target system is analysed
with various lenses that all lead to a specific model.

v. Integration of scales of consideration — resource and
environmental issues may often be considered at a variety of
temporal and spatial scales. Components of a system may
operate at different scales. While catchment boundaries may
be most appropriate for considering hydrology-related issues,
social and economic boundaries are likely to differ (e.g.,
households, farms, or political entities). Within the physical
component of a system under study, linked subsystems may
operate at different scales. In hydrological systems for
instance, the groundwater and surface water components
tend to operate at very different spatial and temporal scales
(Welsh et al., 2013). Treatment of issues at different scales
may occasionally be achieved by nesting scales, but knowl-
edge and computational constraints typically necessitate
some compromise between the scales of component pro-
cesses. In integrated modelling for policy support, scale se-
lection is a balancing act between: i) the scales of interest for
end users or stakeholders; ii) the scale at which processes
occur or can be represented; iii) the linkage between model
components that represent processes across different scales;
and iv) practical constraints such as data or computation
limitations (Van Delden et al., 2011).

Of course, these five types of integration are not mutually
exclusive. The integration of processes, disciplines or models may
also involve the integration of different issues and scales
(Kalaugher et al., 2013; Voinov and Shugart, 2013). Also, an inte-
grated treatment of environmental, social or economic issues may
require an integration of modelling techniques at a variety of scales.
Some level of stakeholder integration is likely to be a feature of any
integrated assessment exercise.

Several modelling approaches can be used for integrated
assessment. There are different ways to cope with the specific re-
quirements of the various types of integration above — starting
with coupling models from different disciplines, up to approaches
that suit the incorporation of integrated knowledge and represen-
tations into models. Below in Section 3 we review some of the most
relevant integrated modelling approaches before providing some
guidance in choosing the most appropriate one(s).

2. Considerations for model choice
When choosing the type of modelling approach to be used it is

important to consider three main questions: What is the purpose of
the model? What types of data are available to develop and specify
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the model? And, who are the model users and what requirements
are there on the scales and formats of model outputs?

2.1. Model purpose

In the field of integrated assessment, models are generally built
to satisfy one or more of five main purposes:

Prediction involves estimating the value (quantitative or qual-
itative) of a system variable in a specified time period given
knowledge of other system variables in the same time period.
Models are often developed to predict the effect of a change in
system drivers or inputs on system outputs. For example, a model
may predict a change in the probability of an algal bloom occurring
in a water body given that there is going to be an increase in the
level of nutrients delivered to the water body and the impacts of
alternative management actions. Predictive models may be very
simple (often empirical, sometimes including theory to predict
outliers) or may be more complex. Increased complexity of a model
does not necessarily lead to improved predictive performance, so
many successful predictive models, when judged with historical
data only, have relatively simple structures that are well grounded
in historical observations and mimic patterns or relationships
observed (DePinto et al., 2004). Predictive models are generally
required to have some level of accuracy in reproducing historic
observations, and thus require data for calibration, and other in-
dependent data for validation.

Forecasting refers to predicting the value of a system variable in
future time periods (short-, medium- or long-term), without
knowledge of the values of other system variables in those periods.
For example, a model may use observed rainfall today to forecast
the chance of rainfall tomorrow. Time series methods are very
commonly used for forecasting problems (e.g. Box et al., 1994).
Forecasting can include likely or potential future scenarios, for
example climate change and their impacts on biodiversity
(Millennium Ecosystem Assessment, 2005). The accuracy of fore-
casting models is commonly tested by considering the difference
between ‘forecast’ values and historic observations. With less in-
formation than that available for use in prediction, forecasting is
typically more uncertain than contemporaneous prediction, unless
coupled with real-time observational correction, with uncertainty
typically growing with the length of the forecasting horizon (Alvisi
and Franchini, 2011; Todini, 2004).

Management and decision-making under uncertainty often
benefit from models, which are used in problem formulation and
may be incorporated into decision support systems and integrated
assessment tools in this context. These models may be simulation-
based (i.e. developed to answer ‘what if type questions) or
optimisation-based (developed to provide the ‘best’ option under a
given objective, subject to constraints). Tools such as multi-
objective optimisation and multi-criteria analysis can provide
insight into the trade-offs between competing objectives (Ascough
et al., 2008; Maier et al., 2008) and can be coupled with simulation
models (Gibbs et al., 2012). Management and decision-making
models are usually needed to be able to differentiate between de-
cision alternatives or management options (Ravalico et al., 2010).
This usually requires the model to give sufficiently accurate esti-
mates of the magnitude and direction of changes in the achieve-
ment of objectives in response to changes in management actions
and other system drivers (Reichert and Borsuk, 2005). Decision
support models can be considered in terms of four main types of
decision contexts (Barton et al., 2012; Sutherland, 1983): i) directive,
where long-run options are explored, but the decision alternatives
and causal structure for understanding their consequences are
ambiguous and only likely directions of development can be pre-
dicted; ii) strategic, where focus is on evaluating alternatives to

avoid medium-term future problems and to consider likely
learning opportunities from policy; iii) tactical, where the models
account for continuous observations and assist managers to react to
short-term predictions; and iv) operational, where the causal
structures are known and models are used to analyse and recom-
mend alternative actions. There is a noticeable overlap between
decision support models and those built for prediction; model
purposes are clearly not mutually exclusive.

Social learning is increasingly acknowledged as a valuable output
of building models. Social learning refers to the capacity of a social
network to communicate, learn from past behaviour, and perform
collective action, e.g. dealing with complex technical tasks and at the
same time the social relational activities (Fraternali et al., 2012;
Haapasaari et al.,, 2012). Complex issues such as river basin man-
agement might be well served by taking into account the diversity of
interests and mental models, and representing the processes of in-
formation and knowledge dissemination (Maurel et al., 2007). In this
case, models allow individuals to learn and experiment so as to
inform their understanding of the way the system may work and the
way their actions may interact with the actions of others to create
system outcomes. Models developed for social learning often have a
large emphasis on the interactions between individuals or groups
and may include representations of less well-understood processes.
The emphasis in models developed for social learning tends to fall
more on the plausibility of interactions and outcomes than the pre-
dictive accuracy of the model (Levontin et al., 2011).

Developing system understanding/experimentation is the
purpose of many models developed to summarise and integrate
available knowledge on system components in order to improve
understanding of the entire system and the way it may react to
changes in system drivers. Such models may include components
that are less certain (to test the potential effect of the various as-
sumptions) than those used for prediction, forecasting or decision-
making. These models are fitted to their intended audience: some
are ‘research’ models, accessible to the model builder and other
researchers in order to explore their own assumptions; while
others are stakeholder models that are generally developed with a
large non-technical audience in mind, with the intention to open
the black box such as with role playing games when the audience is
not used to computer simulation (Barreteau et al., 2001). As with
social learning models, model veracity tends to be considered in
terms of plausibility and possible implications for the system rather
than historical accuracy.

2.2. Types of data available

There are two main types of data available to construct a model:
quantitative data and qualitative data. Quantitative data refers to
the measurable characteristics or fluxes in a system and may
include time series, spatial, or survey data. Qualitative data or in-
formation includes expert opinion, stakeholder beliefs or some
types of information derived from surveys and interviews. Such
information may be categorical in nature, e.g. yes/no, high/me-
dium/low, but can also be descriptive or rule based. Almost all
model development relies on both quantitative and qualitative
information. For example, even purely quantitative models rely on
theory or knowledge about systems interactions (e.g. likelihood
distribution assumptions) in the development of their underlying
conceptual frameworks. However, some modelling approaches
allow qualitative information to be explicitly incorporated not just
in the system conceptualisation but also in the calibration and
parameterisation of the model. In this paper, the distinction be-
tween an approach’s ability to use quantitative or qualitative data
refers specifically to explicit incorporation of such information in
model specification, rather than conceptualisation.
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2.3. System conceptualisation

When describing a system there are three major dimensions in
which the system has to be conceptualised: space, time and
structure.

2.3.1. Treatment of space
There are essentially four different approaches to treating space
in a model:

i. Non-spatial models do not make reference to space. For
example a predator-prey model may not refer to any partic-
ular spatial scale (Atanasova et al., 2011; Ramos-Jiliberto,
2005).

ii. Lumped spatial models provide a single set of outputs (and
calculate internal states) for the entire area modelled. For
example, the impact of a change in nutrient delivery to a lake
may be modelled using a simple function as a total change in
biomass for the entire lake system. In this case the lake sys-
tem is not disaggregated into smaller units (as in the exam-
ples in iii below) and the interactions between parts of the
lake system are not considered explicitly.

iii. “Region”-based, compartmental spatial models provide
outputs (and calculate internal states) for homogeneous sub-
areas of the total area modelled. These sub-areas are defined
as homogeneous in a key characteristic(s) relevant to the
model, e.g. homogeneous soil types, similar production sys-
tems or belonging to the same administrative region. For
example a lake system may be disaggregated into areas
within 1-2 m of the shoreline, the creek leading into the lake
and the deeper lake systems. Interactions between these
three ‘regions’ are then considered by the model. The model
is also able to output impacts for each of these regions.

iv. Grid, cell or element-based spatial models provide outputs
(and calculate internal states) on a uniform or non-uniform
grid- or vector-based representation (see for example
Brown Gaddis et al., 2010; Laughlin et al., 2007; Pausas and
Ramos, 2006; Rasmussen and Hamilton, 2012; Schaldach
and Alcamo, 2006). Neighbouring grid elements or cells
may have some of the same characteristics but will still be
modelled separately, as opposed to homogeneous region-
based spatial models where these areas would be lumped. For
example when considering the impact of land use changes on
terrestrial ecosystems, the landscape may be divided into a
uniform grid, where the descriptors of each grid cell are based
on either a single measurement or an average of measure-
ments in that cell (e.g. land cover, species distribution, soils).
These cells may then be modelled either independently or as
a connected series depending on the conceptualization of the
model.

v. Continuous space models like partial differential equations
are typically discretised in environmental modelling into one
of the above, though in some cases their direct analytical
treatment can produce interesting theoretical results about
system performance (Vanhatalo et al., 2012).

2.3.2. Treatment of time
Similar to treatment of space, there are a few common ap-
proaches to dealing with time in models:

i. Non-temporal, static/steady state models do not make
reference to time. For example, key ecological attributes of a
landscape may be considered to be patch size and connec-
tivity. These may be modelled for different scenarios from a

static land use or management decision using appropriate
ecological indicators. This is essentially a simple model of
ecological impact of land use change that has no reference to
time.

ii. Lumped, discrete temporal/transient models generally
provide outputs over a single time period, such as average
annual outputs. For example many nutrient and sediment
export models output an average annual load, rather than an
annual or daily time series (e.g. Lu et al,, 2006; Lynam et al.,
2010; Shrestha et al., 2006; Wilkinson et al., 2009).

iii. Dynamic, quasi-continuous models provide outputs for
each time-step over a specified period. The time step can be
made as small as needed. For example, a model may calculate
the change in system variables each day, month or year. This
approach is usually taken when the response of the system to
a time varying input is required.

iv. Continuous models result when the time-step becomes
infinitesimally small and the discrete (difference equations)
model becomes formulated in terms of ordinary differential
equations. Such models are sometimes treated analytically as
in the case of the Lotka—Volterra or other theoretical models
of ecological communities (Svirezhev and Lofoget, 1983).

For integrated models, the entire model may not employ a single
spatial or temporal scale or resolution, which creates additional
problems in integration. For example, a dynamic, grid-based lake
model may be linked to a spatially and temporally averaged eco-
nomic or ecological model. In general, the conceptualisation of
interactions and choice of aggregation or disaggregation level is
subjective and is likely to affect model outputs. Sensitivity to such a
choice should be considered eventually by alternative con-
ceptualisations when interpreting model results, and if the influ-
ence is too great the model may need to be modified (for example
component models may need to be redesigned to work at a
different scale).

2.3.3. Treatment of entities or structure

Some models are designed to estimate average, aggregated or
distributional characteristics of a population or phenomenon, while
others, such as agent-based models, simulate autonomous groups
like population settlements (Sanders et al., 1997) or individuals as
‘agents’ and their (preferential/behavioural) interactions with each
other and their environment (see for example Filatova et al., 2011;
Gao and Hailu, 2012; Hood, 1999; Schreinemachers and Berger,
2011; van der Veen and Otter, 2001). Also referred to as multi-
agent systems or individual-based models, these representations
are based on the idea that detailed knowledge and information are
available on the properties of individuals and that system proper-
ties are a potentially non-linear consequence of agent actions
(Hood, 1999). Thus the concept of ‘emergent behaviour’ of the
system as a result of individual interactions is a key concern of
agent-based modelling. These types of models are most commonly
developed for ecological or socioeconomic applications in which
agents represent humans or non-human animals. See Section 3.4
for further discussion on agent-based models.

Among aggregated models we also find many ways to treat
system structure. Depending upon the level of detail that is justified
or can be afforded we can find models that operate with just a few
most important variables, compared to models that describe the
system structure in terms of dozens or even hundreds of variables.

2.4. Treatment of uncertainty

Uncertainty is an important consideration in developing any
model, but is particularly important and usually difficult to deal
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with in the case of models of complex systems. Uncertainty in
models may be derived from uncertainties in system understand-
ing (i.e. what processes should be included, how different processes
interact), from uncertainties in interpretation of data in relation-
ship to the variables of interest (e.g. Linden and Mantyniemi, 2011)
and measurements used to parameterise the model or from un-
certainty in the inputs or conditions used for model runs. Uncer-
tainty may also be related to issues of complexity, e.g. ambiguities
that often exist in the different perceptions of system definition and
alternative causal structures (Mdntyniemi et al., 2013), or in the
conceptualisation and problem framing due to multiple knowledge
frame uncertainties (Brugnach et al., 2011; Henriksen et al., 2012).
For models aiming at providing an integrated representation,
‘validating’ their predictive accuracy is generally not straightfor-
ward due to a lack of appropriate data for ‘validation’, especially for
future predictions.

Some modelling approaches, such as Bayesian networks (Section
3.2), are able to explicitly deal with uncertainty in interpretation of
data, measurements or conditions. Other approaches, such as sys-
tem dynamics (Section 3.1), coupled components models (Section
3.3), and agent-based models (Section 3.4) require comprehensive
testing of the model to allow this understanding to be developed.
The level of testing required to develop this understanding (which is
dependent on the modelling objective)is rarely carried out however,
largely due to time and other resource constraints. Such a task can be
complex for even relatively simple integrated models (see for
example Norton and Andrews, 2006; Norton et al., 2006; Refsgaard
et al., 2006). Modern Bayesian parameter estimation procedures
(Gelman et al,, 2004; Mdntyniemi et al., 2013) account for the
mutual dependencies of parameters (variance—covariance struc-
tures of parameters) that are key for predictions of future states
given historical data; however Bayesian methods remain underu-
tilised in practice (Kuikka et al., 2013).

Requirements regarding model uncertainty are often associated
with the purpose of the model. For example, the variation of a
system output from observed values may be very important for
forecasting models, but may be much less critical for social learning
models, where the emphasis is more on stakeholders exchanging
ideas and knowledge. In a management model, the user may be
more concerned with being able to estimate the magnitude, or
merely the direction, of impacts from two alternative management
options (or scenarios) rather than precise prediction values
(Reichert and Borsuk, 2005).

2.5. Resolving the model

There are four main approaches for generating output from
environmental models. The first of these is scenario-based, where
the model is developed to consider the impacts of implementing
management interventions or decision options (often referred to as
‘what if?’ analysis). This type of approach is intended to allow the
user to explore the results of various actions or policies and the
effects and associated trade-offs.

The second approach is solving the model equations analyti-
cally. This is of course possible only for models that are sufficiently
simple, usually with just several variables and no spatial repre-
sentation. In this case we can get a full description of the parameter
space and know what the system behaviour will be under all
possible combinations of parameters. This approach gives us an
ultimate understanding of system performance, but the limits on
model complexity are quite restrictive.

The third approach is optimisation, in which the model explic-
itly determines the best intervention or decision according to a
specified objective (maximise net returns, minimise environmental
costs) subject to various constraints. In this case, the model user is

generally presented with a single ‘best’ option or intervention. The
objective function may be defined as a weighted combination of
multiple objectives.

A fourth approach considers conditions to respect sets of con-
straints instead of a single objective, with an aim of determining
explicitly the sets of parameters and actions allowing to meet these
multi-objective requirements (Carnevale et al., 2012; Farmani et al.,
2009).

The choice of one approach over others is often imposed by
computational, theoretical and end user considerations. For
example, optimisation often requires an extensive search of the
space of alternatives, which for complex and large integrated
models, can be prohibitively expensive from a computational
perspective. A possible solution is to simplify the model by use of a
metamodel (Pifieros Garcet et al., 2006; Ratto et al., 2012), but even if
this is possible, another requirement is to be able to formally define
an objective function to be optimised. In case of multi-objective,
multi-stakeholder problems, such a formalisation is not an easy
process (Farmani et al., 2012) and in many cases not even desirable.

3. Approaches to modelling complex systems

Given the different definitions of what constitutes integration
and the varied purposes of modelling, many approaches to devel-
oping models of complex systems have been pursued. This section
provides a classification of five model types for integrated assess-
ment before providing an overview of applications of each
approach. These are Systems Dynamics (SDs), Bayesian Networks
(BNs), Couple Component Models (CCMs), Agent-Based Models
(ABMs) and Knowedge-Based Models (KBMs). It concludes with a
framework for choosing the appropriate approach, given re-
quirements placed on the model and type of applications defined
by system definition and as part of development of terms of
reference for the modelling project. Classification using a concise
framework can be somewhat arbitrary, and particular models may
belong to more than one class, or be a mixture of more than one
class. For example, a Bayesian network that consists of interactions
between individuals may also be viewed as an agent-based method
(Lehikoinen et al., 2013) or even an expert system if the structure of
the network and the information that populates it are derived from
expert opinion (e.g. Lecklin et al., 2011).

A summary of each of the approaches, the types of model ap-
plications for which they are appropriate and the way in which they
deal with the considerations described in Section 2 are given in
Table 1. Table 2 provides a summary of several integrated assess-
ment studies classified by the approach used.

3.1. System dynamics

3.1.1. What is system dynamics?

System dynamics (SD) modelling represents a set of conceptual
and numerical methods that is used to understand the structure
and behaviour of complex systems. According to Jay Forrester
(1961), the founder of system dynamics, the methodology has
three key principles: feedback control theory, understanding the
decision-making process, and the use of computer-based technol-
ogies to develop simulation models. There has been debate about
how to view system dynamics (as a philosophy, paradigm, or
methodology), and its epistemological and ontological stance
(positivist or interpretivist) (Lane, 2001; Lane and Oliva, 1998).

There is much written about the philosophy of system dy-
namics, but in essence it boils down to system formalism based on
ordinary differential (or rather difference) equations, which is
formulated when the modeller converts the dynamic hypothesis
into a “stocks and flows” representation. A dynamic hypothesis is a
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Table 1

Summary of the five approaches to integration.

Optimisation or

Treatment of uncertainty in model

structure

Treatment of uncertainty
in inputs/parameters

Treatment of time

Treatment of space

Typical applications Types of data

(in approx. order)

Approach

scenario-based

Scenario-based
(also refers to

Challenging but possible through Requires comprehensive

Routine

Quantitative mainly Limited to date —

e System understanding/

System dynamics

discrimination tests between

alternatives

lumped ‘regions’, Monte Carlo (MC) runs. Scenarios to

experimentation
e Social learning

simulation-based)

simulate plausible range of inputs

and other drivers

and non-spatial,
more common

Both

Structural learning from data and

knowledge is possible

Explicit by assigning probabilities to

Limited — lumped
the links between the states of

temporal, or

Limited to date —

Both

e Decision-making and

Bayesian networks

lumped ‘regions’,

management
e Social learning

variables. Scenarios to simulate

non-temporal,
more common

and non-spatial,
more common

plausible range of inputs and other

drivers

e System understanding/

experimentation

e Prediction

Both

Requires comprehensive

Challenging through MC and/or

Routine though

component

Quantitative mainly Comprehensive
set of options

e Prediction, forecasting

Coupled component
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discrimination tests between

alternatives

Bayesian inference if model run-

but qualitative possible

e System understanding/

models

time not a constraint. Scenarios to

models may
be limited
eg if BN
Limited

experimentation
e Decision-making and

simulate plausible range of inputs

and other drivers

management
o Social learning

Requires comprehensive Scenario-based

Challenging but possible through
MC runs. Scenarios to simulate

Limited

Quantitative mainly

Agent-based models

discrimination tests between

alternatives

e System understanding/

plausible range of inputs and other

drivers

experimentation

Scenario-based

Requires comprehensive

Can be explicit

Various - usually
non-temporal

Limited — lumped,

non-spatial

Both

e Decision-making and

Knowledge-based

discrimination tests between

alternatives

management
e Prediction

models

but rules can be

more common

‘forecast’ based

e Forecasting

conceptualisation of the causal relationships, feedback loops, de-
lays, and decision rules that are thought to generate system
behaviour. Stocks (also known as accumulators or levels) represent
the system state variables (Sterman, 2000). Flows (also known as
rates) are the processes that influence change in the stock levels
(the right-hand side of equations). A simulation engine is used to
run the numerical model, and simulate the change in the values of
stocks and flows over time.

In many SD applications (particularly those using tools such as
Stella, Vensim and Powersim), there has been special emphasis on
two important aspects of the modelling process. First, eliciting the
causal assumptions that end users have about the system (known
as mental models), and developing models that test the veracity of
these assumptions. Second, engaging end users and stakeholders in
a modelling process which fosters the values of openness, diversity,
and self-reflection (i.e. social learning purpose) (Costanza and Ruth,
1998). Based on these ideas, a number of SD-based modelling ap-
proaches have emerged, such as: mediated modelling (Metcalf
et al, 2010; van den Belt, 2004) and Group model building
(Vennix, 1996). Note, however, that there have been questions
about the empirical evidence for the effectiveness of SD approaches
for social learning (Qudrat-Ullah, 2008).

3.1.2. How do system dynamics approaches deal with model
considerations?

In system dynamics we usually deal with discrete time and,
particularly when using tools such as mentioned above, quite
limited treatment of space. Either the model is spatially aggregated
or at best it deals with a few spatial compartments. Uncertainty in
data and input values must be considered by comprehensive
testing of the model; that is, neither data nor parameter uncer-
tainty are explicitly considered in the model structure. Each
parameter needs to have a real world counterpart (Sterman, 2000),
and should be tested for the values for which the model remains
valid (Coyle, 2000). Indeed, as with most integrated modelling
approaches, BNs being an exception, treatment of uncertainty re-
quires Monte Carlo type simulations for assumptions about errors
in inputs and parameters, and comprehensive discrimination tests
between alternative model structure assumptions.

Like other causal-descriptive models, it is not sufficient to
generate accurate output behaviour but, more importantly, the
model structure should be a sufficient representation of the real
system under study (i.e. as often said the model should produce the
“right output behaviour for the right reasons”). The philosophical
and technical aspects of model validation have been addressed
quite early in the system dynamics literature (e.g. Barlas, 1989,
1996). These models are usually simulation-based, being developed
to consider ‘what if' type questions. Whereas qualitative data are
often used throughout the modelling process (Luna-Reyes and
Andersen, 2003), incorporating qualitative data into system dy-
namics models and assessing the impacts of soft variables is chal-
lenging. A number of methods have been developed to address this
requirement (e.g. Ford and Sterman, 1998; McLucas, 2003).

SD models are most useful for social learning and enhancing
system understanding or for experimentation applications (e.g.
Hare, 2011; Seppelt and Richter, 2005; Sterman et al. 2013; Yeh
et al., 2006).

3.1.3. Advantages and disadvantages of system dynamics models
Aside from the capacity to model feedbacks, delays, and non-
linear effects, using SD provides several advantages to the model-
ling process and end users. First, SD models (even just as concep-
tual models) are useful learning tools that help improve system
understanding and foster system thinking skills and knowledge
integration for modellers and end users. For example, the



Table 2

Selected applications of integration approaches.

Reference

Management problem

Study area

Components

Optimisation/scenario

Uncertainty

System dynamics
Chang et al., 2008

Ferndndez and Selma (2004)

Hilty et al. (2006)

Janssen (2001)

Kuper et al. (2003)

Lauf et al. (2012)

Qin et al. (2011)

Saysel et al. (2002)

Settle et al. (2002)

Yeh et al. (2006)

Coastal zone management

Water resource management

Impact of Information and
Communication Technologies
on environmental sustainability

Lake eutrophication

Water resource management

Urban development

Water resource management

Water resource management

Exotic species invasion

Soil erosion and nutrient
pollution

Kenting, Taiwan

Irrigated lands of Mazarrén and
Aguilas, SE Spain

European Union

Not implemented for a specific
case — exploratory model

Niger River delta — Mali

Berlin metro region

Shenzhen River, China

Numerous provinces in Turkey
involving dam projects on the
Euphrates and Tigris Rivers

Yellowstone Lake, WY, USA

Keelung River, Taipei, Taiwan

Socioeconomic (tourism, land
development)
Environmental (sediment,
wastewater)

Ecological (coral reef, fish,
algae)

Management

Agriculture

Socioeconomic

Water resources

Pollution

ICT industry

ICT use

Energy

Transport

Goods and Services

Waste

Lake ecosystem model
(movement of phosphorus
through the system — soil,
water, mud)

Human system model
(behaviour of agents —farmers)
Human migration, population
increase

Land degradation
Population dynamics (fish)
Economic

Household structure
Population dynamics

Urban development
Socioeconomic (population,
gross regional production,
water demand, pollution
generation)

Water infrastructure (water
supply, wastewater treatment)
Receiving water system
(hydrodynamics, water quality)
Socioeconomic

Land degradation (erosion,
salinity)

Water quality and quantity
Institutional

Aquatic ecology
Socioeconomic

Soil erosion

Sediment transportation
Runoff

Nutrient

Economic

Scenario-based

Scenario-based

Scenario-based

Scenario-based

Scenario-based

Scenario-based

Scenario-based

Scenario-based

Scenario-based

Scenario-based

Sensitivity analysis

N/A

Model output generated for
each scenario was compared
with qualitative estimation and
validation from experts

Agents degree of uncertainty is
quantified as the difference
between expected returns and
the actual returns of the
decisions made in the previous
time step

N/A

N/A

Scenario analysis
Qualitative assessment/
discussion of uncertainties

N/A

N/A

N/A

(continued on next page)

I81—6S1 (€10Z) Lt 21bmifos 3 Suljlopojl [pjudtuuonaug /o 19 (1oy2337) Ajjo) vy

91



Table 2 (continued )

Reference Management problem Study area Components Optimisation/scenario Uncertainty
Bayesian networks
Bacon et al. (2002) Land use change Wales Land use change Scenario-based First stage of model

Borsuk et al. (2004)

De Santa Olalla et al. (2007)

Dorner et al. (2007)

Henriksen et al. (2007)

Kuikka et al. (1999)

Lehikoinen et al. (2013)

Levontin et al. (2011)

Molina et al. (2010)

Pérez-Mifiana et al. (2012)

Pollino et al. (2007)

Rieman et al. (2001)

Eutrophication

Aquifer planning

Non-point source pollution

Groundwater contamination

Fisheries management

Oil combating fleet locations

Fisheries management

Water resources management

Greenhouse gas emissions

management

Decline in native fish
communities

Land management

Neuse River estuary, NC, USA

Eastern Mancha, Spain

Stratford Avon upper
watershed, Southern Ontario,
Canada

Havelse Creek catchment,
Denmark

Baltic Sea

Gulf of Finland

Baltic Sea

Altiplano region, Murcia, Spain

UK (agricultural sector)

Goulburn Catchment, Victoria,
Australia

Columbia River Basin, USA

Agriculture
Socioeconomic

Water quality

Aquatic ecology

Water inputs
Environmental restrictions
Urban consumption
Agricultural consumption

Erosion and sediment transport
Economic

Groundwater flow and
transport

Urban and rural pesticide
sources

Farm economics

Ecological and sociological
impacts

Mesh size

Exploitation level

Fish recruitment and growth
rates

Recovery efficiency of vessels
Location of vessels

Weather impact

Bioeconomic

Sociological (commitment to
management, compliance)
Biological

Hydrogeology
Socioeconomic

Fertiliser, crops and land use
change

Farm livestock emissions
Farm energy emissions
Carbon sequestration

Water quality

Hydraulic habitat

Structural habitat

Biological potential

Species diversity

Population dynamics
(salmonids)
Aquatic ecology

Scenario-based

Scenario-based

Scenario-based

Scenario-based

Both scenario- and optimal-
based

Both scenario- and optimal-

based

Scenario-based

Scenario-based

Scenario-based

Scenario-based

Scenario-based

acknowledges that findings are
not absolute and estimates
errors

Probability distributions
propagated to model endpoints
Each node has a conditional
probability table, which
quantifies how much that node
is related to its parent nodes in
probabilistic terms

Monte Carlo simulation to
compute probability
distributions for the model’s
outputs, using probability
density functions from other
studies.

Monte Carlo simulations;
Scenarios for different growth
rates

Uncertainty in parameters
reflected in conditional
probabilities; sensitivity
analysis (value of information)
Uncertainty in parameters
reflected in conditional
probabilities

Comparison with results from
parallel studies; Stakeholder
review

N/A

Uncertainty in
parameterization through
expert elicited and data-based
conditional probabilities.
Sensitivity analysis helped
identify errors in the network
structure or CPTs.

N/A
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Sadoddin et al. (2005)

Ticehurst et al. (2011)

Ticehurst et al. (2007)

Coupled component models
Fischer and Sun (2001)

Krol et al. (2001)

Lehtonen et al. (2007)

Letcher et al. (2004)

Letcher et al. (2006a,b)

Matthies et al. (2006)

Miinier et al. (2004)

Prato (2005)

Rivington et al. (2007)

Rutledge et al. (2008)

Schluter and Ruger (2007)

Salinity management

Natural Resource management

Management of coastal lakes
and estuaries

Analysing and projecting
regional land use

Semi-arid regions and
vulnerability to climate change
Agricultural development
Water allocation, access and

pricing

Integrated Water Resources
Management

Water quality management

Agricultural land use change

Landscape change

Climate change impact

Regional development

Water management

Little River catchment,
Macquarie River Basin,
Australia

Wimmera catchment, Victoria,
Australia

Various, NSW Australia

China

North East Brazil

Ylaneenjoki and Taipaleenjoki
regions, Finland

Namoi River Basin, NSW,
Australia

Numerous small catchments,
northern Thailand

Elbe River basin, Germany

Denmark

Rock Mountain West, USA

‘Hartwood farm’, Scotland and
‘Agrichiana farm’, Italy

Waikato region, New Zealand

Amudarya river delta, Central
Asia

Social acceptability

Terrestrial ecology

Economic impacts (agricultural
returns)

Hydrological

Stream ecology

Socioeconomic (landholder
values/attitudes, knowledge,
income/funding, farm
practices)

Impacts on economic
production

Water quality

Terrestrial habitat

Social acceptability and cultural
values

Aquatic habitat, flora and fauna

Terrestrial ecology
Economics

Water resources

Agriculture

Socioeconomic

Nutrient leaching

Economic

Hydrology

Farm returns and decision-
making

Policy and access arrangements
Hydrology

Crop growth

Household returns and making
Erosion

Precipitation-runoff
Nutrient loads

Hazardous substance loads
Economic

Terrestrial ecology
Economic

Land use change

Ecological assessment
Policy

Biophysical systems model
Management systems model

Climate change
Hydrology

Water quality
Demographics
Economics,

Land use

Terrestrial biodiversity
Water allocation
Changes to major
environmental variables
Habitat suitability

Scenario-based

Scenario-based

Scenario-based

Optimisation

Scenario-based

Scenario-based

Scenario-based

Scenario-based

Scenario-based

Scenario-based

Scenario-based

Scenario-based

Scenario-based

Scenario-based

Uncertainty in
parameterization through
conditional probabilities, no
estimate of structural
uncertainty

Sensitivity analysis;
Comparison of BN analysis
results with that from a
conventional analysis based on
same data; Expert review
Uncertainty in
parameterization through
conditional probabilities, no
estimate of structural
uncertainty

N/A

N/A

N/A

Limited analysis of parameter
sensitivity conducted.

Detailed analysis of parameter
sensitivity conducted.

N/A

NJA

N/A

N/A
However, authors identified
uncertainty as the principal
limitation of their approach.
N/A

The scenario analysis itself was
used as a means to assess
uncertainties in future water
availability

(continued on next page)
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Table 2 (continued )

Reference

Management problem

Study area

Components

Optimisation/scenario

Uncertainty

Turner et al. (2000)

Van Delden et al. (2004); Van
Delden et al. (2007)

Van Delden et al. (2008)

Van Delden et al. (2009)

Van Delden et al. (2010)

van der Veeren and Lorenz
(2002)

Voinov et al. (1999)

Agent-based models
Filatova et al. (2011)

Gao and Hailu (2012)

Gross et al. (2006)

Wetland management and
policy

Catchment management and
regional development

Spatial planning, policy impact
assessment

Desertification, water resource
management, land degradation,
land use planning, land
management

Impact assessment of
(agricultural) EU policies

Catchment management
Nutrient abatement

Catchment management

Coastal zone land use

Recreational fishing
management

Rangeland management

Not specified

Mediterranean catchments
(generic model)

Puerto Rico

Countries and regions (generic
model)

EU-27

Rhine River Basin

Patuxent watershed, Maryland,
USA

Not specified (theoretical
application)

Ningaloo Marine Park, Western
Australia

North-east Australia

Wetland ecology

Climate and weather
Hydrology
Sedimentation
Salinisation

Water demands and usage
Water resources

Land use

Profit and crop choice
Dynamic suitability
Plant growth

Natural vegetation

Land management
Climate change
Economic

Demographic

Transport

Regional interaction
Land use

Climate and weather
Hydrology

Plant growth

Erosion

Regional interaction
Land use

Crop choice

Dynamic suitability
Climate change
Agricultural economics
Demographics

Land use

Crop choice

Dynamic suitability and yield
Nutrient generation and
transport

Water quality model
Environmental indicators
Economic model
Economic (land use) module
Hydrology
Socioeconomic

Aquatic ecology

Water quality

Socioeconomic (land
characteristics, demand/supply,
land market dynamics)
Econometric models (Trip
demand, Site choice, Trip
timing, Trip length, Catch Rate)
Trophic-dynamic model (algae,
fish, coral)

Plant and livestock dynamics
Management actions and
characteristics

N/A

Scenario-based

Scenario-based

Scenario-based

Scenario-based

Scenario-based

Scenario-based

Scenario-based

Both scenario-based and
optimization-based (using AHP
to rank options)

Scenario-based

N/A

Behavioural tests/sensitivity
analysis

Behavioural tests and where
possible comparison of model
output with data

Model output compared with
data and expert validation

Model output compared with
data, behavioural tests

N/A

N/A

N/A

Integrated with fuzzy logic to
incorporate uncertainties over
the preferences of outcomes or
criteria

N/A
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Janssen et al. (2000)

Kaufmann and Gebetsroither
(2004)
Le et al. (2012)

Mathevet et al. (2003)
Parrot et al. (2011)

Schreinemachers and Berger
(2011)

van der Veen and Otter (2001)

Zhang et al. (2011)

Knowledge-based models
Booty et al. (2009)

Chevalier et al. (2012)

Dai et al. (2004)

Ferraro (2009)

Fleming et al. (2007)

Giordano and Liersch (2012)

Lam et al. (2004)

Marsili-Libelli (2004)

Rangeland management

Sustainable use of renewable
resources
Land-use change

Conservation management
Marine wildlife protection
(maritime traffic management)

Agricultural system
management

Land use change

Emissions trading policy design

Environmental effects
monitoring (industry/mining)

Frost damage to agricultural
crops

Water quality

Soil condition

Cholera health risk

Soil salinity

Watershed management

Eutrophication

Not specified

Not specified

Hong Ha watershed, Vietnam

Camargue, France
St Lawrence River Estuary,
Canada

Various

Not specified

Jiangsu Province, China

Canada

Georgia, USA

Noyo River catchment,
California, USA

Inland Pampa, Argentina

South Africa

Lower Amudarya River Basin,
Uzbekistan

Lake Seymour, British Columbia

Orbetello lagoon, Italy

Socioeconomic
Agriculture

Rangeland ecology
Socioeconomic

Forest processes
Socioeconomic (human
population)

Biophysical (landscape)
Land-use related policies

Socioeconomic

Whales

Environment (bathymetry,
navigational charts, tides,
visibility)

Boat

Investment (land, livestock,
technology, crops,
conservation)

Productivity and consumption
Resource dynamics (soil, water,
nutrients)

Socioeconomic

Spatial heterogeneity
Emission abatement costs and
discharge tax

Transaction costs

Market efficiency

Effluent

Fish community

Benthic community

Weather (air temperature, dew
point temperature, wind speed)
Agrometeorology (frost/freeze
risk levels for specified crops)
Water pollution

Water quality

Catchment management

Crop management (tillage,
harvest, yields, fertilization)
Physical soil degradation
Chemical soil degradation

Risk of algal bloom
Socioeconomic model

Plant growth
Groundwater

Soil/surface characteristics
Drainage

Irrigation

Turbidity

Erosion

Water quality

Optimisation

Scenario-based

Scenario-based

Scenario-based
Scenario-based

Scenario-based

Scenario-based

Scenario-based

Scenario-based

Scenario-based

Scenario-based

Scenario-based

Scenario-based

Scenario-based

Scenario-based

Scenario-based

N/A

N/A

Independent replications
method which calculates the
mean values of the impact
indicators and their confidence
intervals

N/A

Results validated against real
scenarios

Sensitivity analysis;
Comparison to other simulators

N/A

N/A

N/A

Fuzzy logic to handle imprecise
nature of frost risk levels

N/A

Sensitivity analysis to assess the
relative importance of input
variables; Fuzzy logic to handle
imprecise nature of the
indicators

Fuzzy logic was applied to deal
with uncertainties in the
environmental variables

Fuzzy logic to handle vague
linguistic variables; Experts
evaluated the reliability of
model outputs

N/A

N/A
(continued on next page)

I81—6S1 (€10Z) Lt 21bmifos 3 Suljlopojl [pjudtuuonaug /o 19 (1oy2337) Ajjo) vy

691



170

Table 2 (continued )

Uncertainty

Optimisation/scenario

Components

Study area

Management problem

Reference

Uncertainty in the input

Scenario-based

Conservation biology

Snake River, USA

Threatened species
conservation

Regan et al. (2004)

parameters is carried through
to the final output value in that

the resulting bounds reflect the
full extent of the uncertainty in

the input parameters

N/A

Scenario-based

Climate

Numerous streams across 7

Water management

Vellido et al. (2007)

Land use

European countries and Israel

Nutrients relative status

Reach location (position from a
wastewater treatment plant)
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distinction between stocks and flows sharpens thinking about the
processes that drive the behaviour of the system. The focus on
identifying and modelling feedback loops encourages closed-loop
thinking (i.e. thinking in terms of interdependent variables rather
than linear and uni-directional links) (Richmond, 1993). Moreover,
an SD model makes a useful distinction between the true and
perceived system conditions. This distinction is essential for
modelling decision-making and social responses.

Secondly, due to advances in the development of high level
dynamic modelling software platforms, such as ithink (isee sys-
tems, www.iseesystems.com), Vensim (Ventana Systems, www.
vensim.com) and Powersim Studio (Powersim Software AS, www.
powersim.com), computational system dynamics modelling has
become widely accessible to people (even with minimal technical
background). These applications are often designed as communi-
cation layers: user-interface, stock-flow, mathematical equations,
and programming code. This design separates a non-modeller user
from the mathematical details of the model.

Thirdly, the system dynamics literature has made rich contri-
butions to approaches that inform the modelling process,
including: data collection methods (e.g. Luna-Reyes and Andersen,
2003), knowledge elicitation/mapping techniques, and policy
analysis (e.g. Andersen et al., 2007). Central to these contributions
is the work done on Group Model Building (GMB): a SD-based
approach that brings together users, decision makers, and mod-
ellers through a facilitated process to develop conceptual and nu-
merical models. Over the last 30 years and more, work on GMB has
resulted in developing and evaluating standardized sets of
modelling activities, known as scripts to be used in participatory
modelling and collaborative planning (Hovmand et al., 2012).

The flipside of user-friendly and efficient model-building tools,
like Stella (isee systems, www.iseesystems.com) or Simile (Simul-
istics, www.simulistics.com), is that it becomes relatively simple to
add variables and interactions to the model, meaning that models
can quickly grow in size and complexity. This may result in devel-
oping “super-elegant” but less useful models, which obscure the
key structures that generate the dynamic behaviour and draw
attention away from the most influential leverage points. The ex-
istence of these user-friendly graphic interfaces has in some cases
been a disservice by offering the false impression that modelling is
always easy and additional variables and processes can be included
with a few clicks of the mouse. As a result models that are overly
complex and lack balance between data availability and accuracy
can easily ensue from the process.

Additionally, inclusion of uncertain or postulated feedback loops
may create complex model behaviour that does not correspond to
real world behaviour and that is often very difficult to verify or
validate. Treatment of space is also very limited in the above-
mentioned model building tools, although this is not due to a
limitation in the method but rather the nature of these tools.
Probably only Simile provides some functionality for that, but not
the other software platforms. This has been partially compensated
for by add-on software packages, such as the Spatial Modeling
Environment (SME; Maxwell et al., 2003) or StellaR (Naimi and
Voinov, 2012) that link system dynamics software to more
powerful spatial engines. Besides these model building tools, soft-
ware environments such as Geonamica facilitate developing and
integrating spatially explicit SD models (Hurkens et al., 2008).
However, working with these environments requires software
development capabilities of the modeller.

3.1.4. Brief overview of applications

Some examples of how the SD approach has been utilised to
investigate complex interactions between humans and ecosystems
are summarised in Table 2. These examples show the use of system
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dynamics for a broad range of applications, from an exploratory
model not tied to a specific application site, to studies, which
integrate social, institutional, agricultural, physical and ecological
factors for specific case study areas. None of these case studies
investigate uncertainty in a comprehensive way. All of the case
studies focus on scenario-based analysis rather than optimisation.
All focus on the development of system understanding rather than
any of the other purposes. The type of problem and location of the
case study differ widely, showing the capacity of the approach to
address a broad range of problems and settings where the focus is
on improved systems understanding.

3.2. Bayesian networks

3.2.1. What are Bayesian networks?

Bayesian networks (BNs) are most commonly used in modelling
for decision-making and management applications in which un-
certainty is a key consideration (see for example Ames, 2002;
Bromley et al., 2005; Jenson, 1996; Kuikka et al., 1999; Newton,
2010; Pearl, 1990; Varis, 2002; Varis and Kuikka, 1999). This is
because, unlike other modelling approaches, BNs use probabilistic
rather than deterministic relationships to describe the connections
among system variables (Borsuk et al., 2004). In a BN, variables are
represented by nodes connected by arrows which represent causal
dependences or an aggregate summary of complex associations
(Reckhow, 2003). Each dependence is then characterized by a
conditional probability distribution (Borsuk et al. 2004) for the
variable at the head of an arrow, given all possible values of its
‘parents’ at the tails of arrows. Variables without parents are rep-
resented by unconditional (i.e., marginal) distributions. Bayesian
decision networks (BDN) are BNs that include decision (i.e. man-
agement) variables and utility (i.e. monetary and non-monetary
cost-benefit) variables (Ames, 2002). Feedback loops cannot be
conveniently represented in BNs but time steps can be used to
describe such effects (e.g. Borsuk et al., 2006).

3.2.2. How do Bayesian networks deal with model considerations?

BNs are able to explicitly incorporate both quantitative and
qualitative information to specify the model. Thus, BNs are partic-
ularly useful when historical data are lacking, but other types of
knowledge, including expert opinion and survey data, are available
(e.g. Chen and Pollino, 2012; Richards et al., 2013; Sadoddin et al.,
2005; Ticehurst et al., 2011). Most applications of BNs are not
explicitly spatial or temporal. Where space or time is incorporated
into a BN model it is often lumped so that variables representing
different locations or times are represented by different nodes (see
Fernandes et al., 2012). BNs are capable of incorporating qualitative
state variables, for example ‘river health is better’ or ‘river health is
worse’, strengthening their relevance for management and deci-
sion-making. Because all relations in a BN are probabilistic,
modelled outcomes inherently include information about predic-
tive uncertainty.

3.2.3. What types of applications are Bayesian networks used for?
Because of their historical roots in decision and uncertainty
theory, BNs are especially useful for management and decision-
making purposes in a wide range of applications where uncer-
tainty is pervasive (e.g. Castelletti and Soncini-Sessa, 2007; Pérez-
Miflana et al., 2012; Ticehurst et al., 2007). Results are presented
in terms of the probability of occurrence for different event or
output states. These states may be qualitative or quantitative and,
because BNs can incorporate a wide range of information types,
predictions can usually be associated directly with management
targets. This makes BNs very accessible to decision-makers. Also,
their relatively straightforward, cause-effect structure facilitates

involvement of non-technical stakeholders in the design, devel-
opment and application of the model (Haapasaari et al., 2012;
Mantyniemi et al., 2013).

3.2.4. Advantages and disadvantages

BNs break down complex causal chains into components that
can be addressed separately (Borsuk et al., 2006). BNs also have the
capacity to use and integrate different sources of information in
order to derive the conditional probability distribution between
variables, reducing constraints imposed by lack of data (Aguilera
et al,, 2011; Chen and Pollino, 2012; Sadoddin et al., 2003; Wintle
et al.,, 2003). For example, the conditional probabilities connect-
ing variables can be specified using everything from detailed
models to qualitative experiential understanding. This also implies
that very complex systems with many state variables can be
considered. Another important advantage of the BN approach is in
communicating model results through stakeholder dialogues,
given that the definitions and appropriate states of outputs have
often been constructed in collaboration with model users.

BNs have some important limitations. Probabilistic relations
within BNs reflect uncertainty in model parameterization, not
model structure. Assessment of structural uncertainty is often
neglected, but can be addressed by building and comparing outputs
from alternative models based on different hypotheses about the
system. This can be done within a single modelling framework,
with the alternative hypotheses represented in a parent node for
those nodes dependent on the hypotheses (Kuikka et al., 1999).
Practical implementation of BNs often requires discretization of
continuous variables. This may add substantial imprecision to
variable relationships and model predictions, and may produce
misleading results where extremes cases (i.e. tails of the distribu-
tion) are of interest (Nash and Hannah, 2011). Finally, as mentioned
above, BNs are not capable of adequately considering feedback
loops.

As with system dynamics, there are now numerous software
platforms available for developing and applying BNs, including the
more commonly used Netica (Norsys Software Corp., Www.norsys.
com), Analytica (Lumina Decision Systems, www.lumina.com),
GeNle and SMILE (University of Pittsburgh, genie.sis.pitt.edu), and
Hugin Expert (Hugin, www.hugin.com). Some BN software plat-
forms have been developed to overcome limitations of the
modelling approach; for example BNT (K. Murphy, bnt.googlecode.
com) and DBmcmc (D. Husmeier, www.bioss.ac.uk/~dirk/
software/DBmcmc) handle dynamic BNs, and BUGS (MRC and Im-
perial College, www.mrc-bsu.cam.ac.uk/bugs) supports continuous
variables.

3.2.5. Brief overview of applications

Bayesian Networks have been used for a very broad range of
problem applications (see Table 2 for examples). BN models are
rarely explicitly spatial or temporal, although lumped representa-
tions of space and time are occasionally used (e.g. object oriented
Bayesian networks as in Molina et al., 2010). This is not necessarily
due to a limitation in the method; it has more to do with the nature
of applications to which BNs have been applied in the past. Simi-
larly, BNs have often been used for problems in which there is only
a simple decision criterion and a limited number of options to be
considered. However, applications such as Ticehurst et al. (2007)
and Farmani et al. (2009) demonstrate that this is not a true limi-
tation of the technique. They use BNs to consider systems with
greater than 50 criteria or variables of interest to the decision
maker and on the order of a million different decision options or
scenarios.

The majority of BN applications use a discrete rather than
continuous representation of variables in the network, although
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the approach does allow for continuous variables under certain
constraints. Most BN applications have been developed for
decision-making under uncertainty and management purposes,
and there is a strong focus on stakeholder participation in model
development.

3.3. Coupled component models

3.3.1. What are coupled component models?

The approach of coupling component models (CCMs) involves
combining models from different disciplines or sectors to come up
with an integrated outcome (see for example Drobinski et al., 2012;
Fennessy and Shukla, 2000; Grant et al., 2002; Laniak et al., 2013;
Letcher et al., 2004; Matthies et al., 2006; Prato, 2005; Rivington
et al., 2007; Schneider et al., 1999; Van Delden et al., 2007, 2011).
This can include the hybridisation of ABMs, SDs, KBMs, BNs and/or
other modelling approaches. The combination of these approaches
is especially seen when integrating social, economic and biophys-
ical components. In such cases, the biophysical models are often the
process-based computationally intensive models and distributed in
time and space, while the social and economic models are often the
ABM, BN, SD or KBM models (e.g. Van Delden et al., 2007).

Coupling may be loose, where outputs from models are linked
together ‘manually’ (i.e., externally to the original models), or
tight where the component models are engineered to work
together to share inputs and outputs. At the extreme, components
may be designed specifically to work together to the extent that
they have limited use on their own without extensive recoding.
The conceptual framework for a CCM generally represents links
between system components, so that nodes often represent
detailed component models, while links correspond to data
passing between models. These models are often able to incor-
porate feedback.

3.3.2. How do coupled component models deal with model
considerations?

CCMs inherit the features of the component models that
comprise them. This means that space and time may be treated in
any of the ways outlined in Section 2.3. Importantly the integrated
model does not necessarily work on the same space and time scales
as the component models (it may be more aggregated) and indi-
vidual components often operate over disparate temporal and
spatial scales. In these cases, disaggregation and aggregation pro-
cedures must often be applied to link models. For example, an
ecological model may operate on a grid, while the linked economic
model may be lumped spatially for the entire area, or may be
region-based (see Van Delden et al., 2011 for further discussion on
scaling issues).

CCMs typically only incorporate quantitative data in model
parameterisation, however this depends on the models that are
integrated. The effects of uncertainty are not explicitly incorporated
in model outputs, but must be determined through detailed testing
and analysis. The level of testing required is generally large given
the complexity of the underlying models and their links, such that
the true uncertainty in these models is rarely well understood and
is difficult to represent. These models may be optimisation- or
scenario-based.

3.3.3. What types of applications are coupled component models
used for?

These models can be useful for prediction, forecasting, man-
agement and decision-making, developing system understanding/
experimentation and, if they are not overly complex, social
learning. However, added model complexity can make these
models inappropriate or difficult to use successfully in prediction

applications for which uncertainty assessments are required
(Voinov and Cerco, 2010). On the other hand, there is a tendency to
assume to include all relevant processes in CCMs; these processes
are made explicit and uncertainties can be specified for them. As in
all modelling approaches choosing a level of detail appropriate for a
specific purpose is something that lies with the modeller and is not
a characteristic of an approach.

3.3.4. Advantages and disadvantages

A CCM can explore dynamic feedbacks, for example between
socioeconomic change and ecological perturbations
(Schreinemachers and Berger, 2011) and can incorporate very
detailed representations of system components and their links.
However, there may be difficulty in conceptually linking legacy
models, as they were not built for integration but rather for in-
depth understanding of a specific discipline. While it is preferred
that the modelling process begins with the conceptual integration
of processes followed by the development of models that fit the
conceptual understanding, this is often not feasible due to time and
other resource constraints (Van Delden et al., 2011). Despite being
less than ideal, the integration of these legacy models seems to be
common practice due to the large investments made in developing
these models, and because they have been calibrated and people
are already familiar with them.

When compared to other simpler approaches, coupled compo-
nent models allow for more depth in the representation of indi-
vidual components. Some tend to compromise the breadth of the
system able to be represented. This is because the complexity of
underlying components imposes limitations in terms of time and
other resources required to develop and run the models, as well as
to estimate their uncertainty (Voinov and Shugart, 2013). Other
approaches focus on a balance in the level of detail of the various
models and, in such cases, individual components usually have a
less detailed representation. When CCMs feature an ad hoc inte-
gration, whereas the other approaches tend to provide a shell to
implement an integrated representation, they do not benefit from
the interfaces available for SD, BN or ABM. Hence normally they do
not facilitate participatory model development.

3.3.5. Brief overview of applications

Coupled component modelling is historically one of the most
commonly used approaches to integrated modelling. Applications
vary greatly in terms of spatial and temporal scales, the system
components considered, the types of problems being addressed
and the approach required (Akbar et al., 2013; Bergez et al., 2013;
Mohr et al., 2013). This can be seen clearly from the breadth of
examples provided in Table 2. CCMs can contain meta-modelled
elements, or even components, which mix the other integrated
modelling approaches. The examples provided demonstrate that a
large range of component models focus on depth of description for
a few system components rather than on breadth of description of
the entire system, but others can have a broader focus and include
less detail in the individual components. This type of model
approach can also be used for scenario-based or optimisation-
based styles of modelling, while the majority of other approaches
tend to primarily use a scenario-based approach.

3.4. Agent-based models

3.4.1. What are agent-based models?

Agent-based models (ABMs) focus on representation of the in-
teractions between autonomous entities in a system representing
most often humans (see for example Bousquet et al., 1999; Filatova
et al,, 2011; Janssen, 2002; Lansing and Kremer, 1994; Le et al,,
2012; Monticino et al., 2007; Moss et al., 2001; Pahl-Wostl, 2002;
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Smajgl et al., 2011; Znidarsic et al., 2006) but also groups (Sanders
et al, 1997), animals (Drogoul and Ferber, 1994) or biophysical
entities such as water (Servat et al., 1998). They are based on the
Multi-agent system paradigm that features autonomous entities in
a common environment able to act on it and communicate with an
internal objective (Ferber, 1999). ABMs are made up of two or more
agents that exist at the same time, share common resources and
eventually communicate with each other. Agents are typically able
to react to perceived changes in their environment through action
on the environment or internal adaptation. ABMs are able to
represent agents’ behaviour with a rule based approach.

A key focus of agent-based modelling is the discovery of emer-
gent behaviour — that is, large-scale outcomes that result from
simple interactions and learning among individual entities. ABMs
are sometimes developed and applied to incorporate complex
cognitive representations of individuals’ mental models, behav-
iours and choices, such as with the BDI (Belief, Desire, Intention)
model (Rao and Georgeff, 1995). Thanks to such features, ABMs can
explore, for example, how the attitudes of individuals or the
institutional setting can affect system-level outcomes (Pahl-Wostl,
2005). For this reason they are particularly useful for social learning
applications. The conceptual framework for an agent-based model
usually describes the interaction of autonomous entities, as well as
their links and their behavioural patterns.

3.4.2. How do agent-based models deal with model considerations?

ABMs handle spatial features well and are tailored to represent
individuals. They are able to deal with elementary (spatial, organ-
isational) level dynamics, as well as aggregated ones, such as
farmers and villages, fields and river catchments (Becu et al., 2003).
Event based frameworks exist but time based ones are easier to
handle. The ABM approach benefits from the existence of dedicated
platforms with easy to re-use components and nice visualisation
features such as in Cormas (Cirad, cormas.cirad.fr), NetLogo (CCL,
ccl.northwestern.edu/netlogo), and Repast (Argonne National Lab-
oratory, repast.sourceforge.net). These platforms lead to use of
ABMs for scenario exploration rather than for optimisation. They
also include features for sensitivity analysis. However, it is still very
difficult to address uncertainty in most ABMs and their simulation
outputs.

3.4.3. What types of applications are agent-based models used for?

ABMs are primarily used for policy and institutional analysis,
and for simulating socioeconomic or socioecological processes to
improve understanding of the dynamic interactions between
agents and their settings. Bousquet and Le Page (2004) provide a
review in the context of ecosystem management, and Berger (2001)
discusses agent-based models in agriculture. Several books have
been edited with collections of applications with target systems
emanating from current (Gilbert, 2007) or ancient social issues
(Kohler and Gumerman, 2000), as well as environmental ones
(Janssen, 2002). ABMs are well suited to social learning, experi-
mentation or management support. However, some are simple
enough to be used for forecasting or prediction (e.g., Duriez et al.,
2009; Schmitz, 2000).

3.4.4. Advantages and disadvantages

Agent-based simulation provides a framework in which tech-
niques can be applied which match various requirements of envi-
ronmental management modelling (Hare and Deadman, 2004).
They are very useful for developing a shared system understanding
when working with stakeholder groups. The complexity of in-
teractions between individuals means that detailed information is
often required to parameterise the model, and the spatial scales of
applications may be limited. The inclusion of less well-known or

understood processes can limit their accuracy for prediction or
forecasting applications, however omitting them may lead to much
worse results and limit their ability for social learning.

The structures of ABMs are generally highly complex, incorpo-
rating not only local interactions but also variability among in-
dividuals and behaviour that adapts to the changing environment.
Consequently, many ABMs tend to have high numbers of parame-
ters and significant computational resource requirements, and
their simulation results may not be easily reproduced. ABMs are
quite a good candidate for several dimensions of integration with
stakeholders thanks to ease of translation in role playing games
(Bousquet et al., 2002; Le Page et al., 2012), but also integration of
issues or disciplines. Although real-world processes can often be
easily communicated with ABMs, the results are often not, espe-
cially when the model shows unexpected and/or emergent
behaviour.

3.4.5. Brief overview of applications

As far as environmental issues are concerned, ABMs have mainly
been used for three purposes: as part of an exploratory participa-
tory modelling process with relatively smaller numbers of stake-
holders considering resource competition problems at local scales;
as a group decision or management support tool and, as part of a
more theoretical or academic study aimed at developing under-
standing of social and biophysical systems. Problems considered
are generally explicitly spatial (often represented with a grid) and
temporal. These models are increasingly being called upon to
consider larger spatial and social scales, including issues with more
policy relevance (e.g. Smajgl et al., 2011).

3.5. Knowledge-based models

3.5.1. What are knowledge-based models?

Traditionally, in this type of model knowledge is encoded into a
knowledge base and then an inference engine uses logic to infer
conclusions (Chen et al., 2008; Davis, 1995; Davis et al., 1992).
Knowledge-based models (KBMs) can be divided into rule-based
models, where the models are formalised by a set of “if-then-
else” rules, and logic-based models, where the models are
expressed as a series of logic statements, called facts, formalised
according to a logic system.

KBMs need to be ‘learned’ based on the experience of the user
and the knowledge inputs to the system, through a process called
‘knowledge elicitation’. This process is supervised by a human be-
ing, in opposition to other types of models, such as Artificial Neural
Networks and to a lesser extent, Bayesian Networks, where the
knowledge is often learnt directly from data. The main resulting
difference is that the knowledge elicited from the expert is
explicitly encoded in facts and rules and it can be also used to
explain deductions based on chains of rule applications, something
which is not trivially available in data-centric models.

KBMs are typically used in Expert Systems which, according to
Haan et al. (1994), are ‘computer software that offers advice to the
software user based on its own store of knowledge and the user’s
response to a number of if-then rules or questions.’ In this case, the
knowledge base will contain a number of models, and their quality
is fundamental as the knowledge base determines the success of
the system (Forsyth, 1984).

3.5.2. How do knowledge-based models deal with model
considerations?

KBMs are able to incorporate both quantitative and qualitative
data and information. When embedded in Expert Systems they
commonly incorporate high-level expertise obtained from top ex-
perts in the field to aid in problem-solving (Waterman, 1985).
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Simple models do not incorporate the uncertainty associated with
rules and information. More sophisticated models, however, do
allow for these sources of uncertainty to be accounted for explicitly
by the definition of certainty factors associated with the rules and
the effects of these on the certainty of the recommendation to be
considered (see for instance, Heckermann and Shortliffe, 1992). In
particular, the use of Fuzzy Set Theory (Klir and Yuan, 1995) in Expert
Systems allowed considerable improvements in the ability to both
represent uncertainty, and also to process it and make inferences, by
means of fuzzy inference engines. The application of the so-called
Fuzzy Expert Systems (Kandel, 1991) in various domains of Envi-
ronmental Sciences has been particularly successful (Chevalier et al.,
2012; Dokas et al., 2009; Lukasheh and Warith, 2001).

Most KBMs are non-temporal, but rules can be created that
incorporate either lumped temporal outputs or outcomes in spe-
cific time periods (e.g. if it rains today it will probably rain
tomorrow). An example is provided by Metternich (2001) on the
design of an expert system to assess temporal and spatial changes
of salinity. Spatial rule-based models have been prototyped, but are
less commonly applied than non-spatial systems, even if we can
remark that Cellular Automata can be based on simple spatial rules,
which are often a combination of expert knowledge and historic
calibration (e.g. Ravazzani et al., 2011). Rule-based models provide
scenario-based outcomes using ‘what if rules, and are therefore not
appropriate for optimisation-based applications. Finally, logic-
based models have also been used to improve the rigour in the
construction of models (Muetzelfeldt et al., 1989), and strictly
related to such attempts are declarative models (Muetzelfeldt,
2007). The aim of declarative models is to separate the mechanics
of numerical integration, required to simulate the model on a
computer, from the logic describing the mathematical relationships
among the model’s variables.

3.5.3. What types of applications are knowledge-based models used
for?

The operation of KBMs by expert systems is useful for all pur-
poses but they are most commonly used for management and
decision-making applications. For some systems, such as waste-
water treatment plants, the diagnostic capabilities of expert sys-
tems (rule backtracking) are also useful. Expert systems have also
been proven useful in the analysis of outputs from large and
complex models (Lam et al., 1988). A KBM can also be used, as
shown by Herrero-Jiménez (2012), in place of quantitative models
in the assessment of environmental impacts. KBMs are often used
as a component with other types of approaches (e.g. Roetter et al.,
2005; Sojda, 2007), in most cases to incorporate qualitative and
difficult to formalise knowledge into technical systems.

3.5.4. Advantages and disadvantages

There are many advantages in using KBMs. Human experts have
to be trained in a specific area in order to gain expertise in that area.
However, if we input expert knowledge into a knowledge base then
others are able to use that knowledge. Combining expert systems,
which contain various KBMs, provide a comprehensive knowledge
base (Hart, 1986). Since an expert system is essentially a program, it
is consistent. Mistakes can occur, but it is rare. KBMs have several
disadvantages. The knowledge must be kept up to date in order to
incorporate new findings which might overturn or improve pre-
vious knowledge. All knowledge must be acquired before it can be
represented (Hart, 1986), and therefore the approach is not suitable
for problems where knowledge of the relevant processes is un-
certain or incomplete. Some problems can be too complex to be
formalised using a KBM, containing too many rules or facts that can
be time consuming for the inference engine to process. In the case
of rule-based models the order in which rules are presented in the

system is very important to ensure the best ‘diagnosis’ is retrieved
(Gruber and Olsen, 1994).

3.5.5. Brief overview of applications

KBMs are an unorthodox approach to integration. They do not
provide any explicit construct to build an integrated model, but the
simple fact that they are based on our pre-processed knowledge of
how we see a problem, means that they are integrated models “per-
se”. They are clearly instrumental in integration of knowledge.

A relevant body of applications has been developed in the field
of wastewater treatment, where the design and implementation of
decision support systems take advantage of the ability of KBMs to
represent human expertise that is difficult to formalise otherwise
(Sanchez-Marré et al., 2008). In particular, they have proven useful
for problem diagnosis for wastewater treatment plants, as recently
shown by Aulinas et al. (2011). In the case of wastewater treatment
plants there are many complex issues pertaining to non-linearities
in biochemical processes that cannot be simply formalised by a
traditional modelling approach. However, KBMs can be used to
elicit the experience of plant operators and therefore incorporate
qualitative information. In other contexts, the knowledge-based
approach has been primarily used to consider fairly simple deci-
sion or management problems, such as the management of soil
(Ferraro, 2009; Giordano and Liersch, 2012), total maximum daily
loads for sediment (Dai et al., 2004) or algal blooms (Marsili-Libelli,
2004). They use a scenario-based approach to the problem and tend
to consider outcomes for one or a few decision criteria. They are not
explicitly spatial but may be temporal or used for forecasting, for
instance forecasting the incidence of algal blooms given antecedent
conditions.

4. Selecting the appropriate modelling approach

The attributes of each of the different modelling approaches
described in Section 3 have been used to develop a guiding
framework for selecting an appropriate approach for new appli-
cations (see Table 3). This table allows modellers and model users
to choose an appropriate model type for their application consid-
ering their aims in model development, the types of data available
to them, the preferred compromise between breadth and depth of
system description, their preferred treatment of uncertainty, and
whether they are interested in considering interactions among
agents explicitly. The following conclusions can be drawn from this
table and the applications presented in Table 2:

e Systems dynamics and agent-based models are similar in being
well suited for the purpose of improving system understanding
and social learning. This is because the emphasis of these
methods is on exploring the plausibility of assumptions and
outcomes, rather than on accurate prediction, forecasting or
decision-making. Such models are often developed to allow
decision-makers and stakeholders to experiment with the
model and try out differing assumptions about poorly under-
stood processes. These models do not tend to be highly pre-
scriptive about policy implications.

Bayesian networks and, to a lesser extent, knowledge-based
models are typically used to directly inform decision-making
under uncertainty. They accomplish this by incorporating
both qualitative and quantitative data to generate predictions
(in the case of Bayesian networks often probabilistic) about the
outcomes of candidate actions or policies. Neither focuses on a
deep representation of processes, but rather provides a greater
breadth of coverage, including explicit information about un-
certainty at an aggregate level. BNs are also valuable for social
learning.
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Table 3
Appropriate use of integrated modelling approaches (X = common feature, * = possible feature).
System Bayesian Coupled Agent based Knowledge
dynamics networks component models based models
models
Reason for modelling/type of application Prediction * X X * X
Forecasting X X
Decision-making under uncertainty * X * * X
System understanding X X X X
Social learning X X X

Type of data available to populate model Qualitative and quantitative data * X * * X
Quantitative data mainly X X X

Model focus on a complex description of Depth of specific processes * X X X
specific processes or greater breath of Breadth of system X X X * X
coverage of interactions in system?

Model to provide explicit information Yes X
about uncertainty caused by model No X X X X
assumptions?

Interest in investigating the interactions Interactions between individuals X
between individuals and their impact Aggregated effects X X X * X
on the system, or only the aggregated
effects behaviour?

e Coupled component models are often regarded as capable of e The ability of coupled component models to describe complex
describing complex interactions among detailed processes for interactions and the fact that it is sometimes convenient to
the purposes of prediction, forecasting and system under- couple existing complex models, is the likely reason for their
standing. They deal with space and time. They are, however, popularity. However, they can also be the most time-intensive
not necessarily better than SD, BN or ABM models for predic- type of integrated model to set-up and may not provide the
tion. Larger, more detailed models often behave poorly as far as broad overview, uncertainty information, or decision-support
uncertainties are concerned because they are more likely to be capabilities that stakeholders may require. On the other
over-parameterised and uncertainties become difficult to hand, coupled component models, especially if built in a top-
explore. down integrative way, can be hybrids of many of the other

Reason for modelling
_— \
Forecasting  prediction System .
— understanding social
learning
Type of data / \ ~
Type of data
\ / ~ Decision-making Are you interested in the interactions
under uncertainty between individuals and their
Quantitative Qualitative impact on the system or only the
mainly & / aggregated effects?
Quantitative \
\L Aggregated
effects Interactions
Qualitative Are the system / between individuals
& processes understood? \‘
Quantitative / \ Are you intereste'd. in focusing AGENT-BASED
on depth of specific processes
Yes or breadth of the system? MODELS
No, knowledge /
KNOWLEDGE- is uncertain or - \
incomplete Depth of specific Breadth of
BASED processes the system SYSTEM
MODELS
\ \ DYNAMICS
BAYESIAN N Are dynamic processes/ /\
NETWORKS o feedback loops /rriportant? o
Yes
COUPLED N /
COMPONENT Ves Are there existing models of
MODELS the system components?

Fig. 1. Decision tree for selecting the most appropriate integrated modelling approach under standard application.
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model approaches and balance complexity with the knowledge
available to calibrate them.

e Agent-based models have proven to be of high utility for social
learning in a wide range of settings where assumptions about
processes and interactions are explored and shared. They can
consider individual and/or aggregated effects.

e Knowledge-based, or conceptual models for any of the ap-
proaches can be a good entry point into the problem to refine
the goals, understand the most important system features, and
identify the key variables and factors.

The guiding framework for selecting the most appropriate
modelling approach is also represented in the form of a decision
tree in Fig. 1. The decision tree and Table 3 are limited to
considering only the five broad approaches, their standard
modelling applications and the selection criteria discussed in this
paper. In Table 3, crosses denote the standard practices and uses,
but nonstandard practice and future developments could enhance
the properties of the modelling methods. When deciding on an
approach for a new application, other approaches, including
hybrid forms (i.e. coupled component models), which use a variety
of approaches to knowledge integration, should also be consid-
ered. For example, there are already attempts to couple ABMs with
system dynamics (Baki et al, 2012; Haase et al, 2012), use
Bayesian methods with ABMs (Parry et al., 2013) or use SD as a
technique to couple complex models, including ABM, knowledge-
based models and cellular automata models (Van Delden et al.,
2007, 2009). As coupled component models are able to combine
any type of model, all types of applications are theoretically
possible, depending on the models included. For example,
although coupled component models are typically built to inves-
tigate the aggregated effects of system behaviour, they can be
applied to explore interactions between individuals if one of the
model components is an ABM.

5. Discussion

There are some considerations in model-building that we have
not addressed here, and some that require more attention, for
example public participation (Voinov and Bousquet, 2010; Hare,
2011). According to Mostert (2006), there are several reasons for
inviting public participation. These include the possibility of:

more informed and creative decision-making

more public acceptance and ownership of the decisions
more open and integrated government

enhanced democracy

social learning to manage issues

Modelling can provide an important and useful mechanism for
accomplishing the above goals. A model can capture a shared un-
derstanding of system processes and can help people to manage
disagreements. With the aid of a model, for example, conflict over
management options can often be reduced (Henriksen et al., 2007)
to more easily resolvable conflicts concerning underlying system
assumptions. In this way, models provide a less threatening means
for developing a shared system understanding than interactions
focused on resolution of specific environmental problems.
Involving communities in model development can also add to the
validity of the final model developed, as well as create an oppor-
tunity for shared governance (Hare, 2011). It is crucial that the
performances of models built for management and decision-
making are appropriately evaluated to establish a level of confi-
dence in the use of their outputs (see Bennett et al., 2013). Delivery
of models through software or a decision-support system can

permit the model to be used by others to make management de-
cisions beyond the timeframe of a scientific research project.

6. Conclusions

This paper has reviewed five common approaches to developing
models for natural resource management and integrated assess-
ment. It demonstrates that there is a variety of approaches that may
be called on to suit different application situations and an
increasing body of literature that use these approaches to solve a
wide variety of problems. As with all modelling problems, inte-
grated model developers need to first have a good understanding of
the purpose of their model and of the types of data available to
parameterise it before they select an approach. This paper has
provided a framework for choosing an appropriate modelling
approach considering spatial and temporal scales required, reliance
on qualitative data, characterisation of uncertainty, and the pur-
pose for which the model is being developed. Importantly the
compromise between representing depth in individual system
components and representing breadth of the overall system has
been demonstrated. The challenge to integrated modellers is to
capture the advantages of these approaches while overcoming
some of their limitations, possibly through the development of
more hybrid models.

Finally, while improved rigour in modelling is required, it is
clear from this review that there are many approaches available for
those interested in developing models, as well as an ever improving
literature of applications and lessons learnt. We are now in a po-
sition to reflect on the discipline of modelling complex systems and
improve its rigour and methods according to the specific kind of
integration at stake in the investigation or modelling of the target
system.
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