Distribution of sea-air CO 2 fluxes in the Patagonian Sea: Seasonal, biological and thermal effects.

Publicado en Continental Shelf Research, v. 143:18-28.
Autores

Kahl, L.C., Bianchi, A.A., Osiroff, A.P., Ruiz Pino, D., Piola, A.R.

Año de publicación 2017
DOI https://doi.org/10.1016/j.csr.2017.05.011
Afiliaciones

Departamento de Ciencias de la Atmósfera y los Océanos, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina Departamento Oceanografía, Servicio de Hidrografía Naval, Buenos Aires, Argentina Expérimentation et Approches Numériques, Laboratoire d&rsquoOcéanographie et du Climat, Université Pierre et Marie Curie, Paris, France

Programa

CRN3

Proyecto CRN3070
Keywords

Highlights

•Near-shore regions outgas CO2 to the atmosphere while offshore regions uptake CO2.

•Thermal effects dominate the CO2 variability in the near-shore region.

•Biological effects dominate the CO2 variability in the offshore region.

Abstract

Sea-air CO2 fluxes (FCO2) in the Patagonian Sea (PS) were studied using observations collected in 2000&ndash2006. Based on the PS frontal structures and the thermal and biological contributions to FCO2 we present a regional subdivision between distinct regimes that provide new insights on the processes that control these fluxes. The coastal regime (CR) is a net source of atmospheric CO2 (4.9 × 10&minus3 mol m&minus2 d&minus1) while the open shelf regime (SHR) is a net CO2 sink (&minus6.0 × 10&minus3 mol m&minus2 d&minus1). The interface between these two regions closely follows the location of along-shore fronts. In addition, based on the nature of the processes that drive the FCO2, the PS is subdivided between northern (NR) and southern (SR) regions. Both, NR and SR are CO2 sinks, but the CO2 uptake is significantly higher in NR (&minus6.4 × 10&minus3 mol m&minus2 d&minus1) than in SR (&minus0.5 × 10&minus3 mol m&minus2 d&minus1). The data reveal a strong seasonality in FCO2. The mean CO2 capture throughout the PS in austral spring is &minus5.8 × 10&minus3 mol m&minus2 d&minus1, reaching values lower than &minus50 × 10&minus3 mol m&minus2 d&minus1 in NR, while in winter FCO2 is close to equilibrium in SR. The analysis of the biological and thermal effects (BE and TE, respectively) on seasonal pCO2 variability indicates that regions of CO2 emission are dominated by the TE while regions of CO2 uptake are dominated by the BE. Our results indicate that the biological pump is the dominant process determining the sea-air CO2 flux in the PS.